首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王玉鹏  周东方  程延祥  黄宇彬 《应用化学》2018,35(12):1442-1448
通过等电点法实现了血红蛋白(Hb)与光敏剂药物七甲川花菁类小分子:11-氯-1,1'-二正丙基-3,3,3',3'-四甲基-10,12-三亚甲基吲哚三碳花青碘盐(IR780)的共担载,并研究了Hb供氧治疗与光动力治疗的联合治疗效果。 通过透射电子显微镜和动态光散射研究了Hb/IR780复合药物载体的形貌与稳定性,证明了药物载体在生理条件下能够稳定存在。 通过对药物在体外溶液和细胞水平的活性氧(ROS)检测,验证了Hb供氧能够有效地促进光敏剂ROS的产生,并且细胞毒性实验也证实了Hb/IR780复合药物载体拥有比单组份IR780药物更明显的肿瘤细胞杀伤效果。  相似文献   

2.
《中国化学快报》2020,31(7):1709-1716
Photodynamic therapy (PDT) is a promising alternative approach for effective cancer treatment, which can directly destroy local tumor cells due to the generation of cytotoxic singlet oxygen and reactive oxygen species (ROS) in the tumor cells. Intriguingly, PDT-mediated cell death is also associated with anti-tumor immune response. However, immunosuppression of tumor microenvironment is able to limit the immune response induced by PDT, it is therefore necessary to combine with immunocheckpoint inhibitor and immunoadjuvant for synergistic treatment of tumors. Herein, the recent advances of PDT, immunotherapy, and photodynamic immunotherapy are reviewed  相似文献   

3.
4.
Oxygen is required for treatment of patients in hospitals and at home, in industrial processes and for fuel combustion. Most commonly oxygen is produced by cryogenic or pressure swing adsorption routes. Other techniques include oxygen-ion conducting ceramic membranes, polymer membranes and chemical processes used mainly in civil aviation to reduce the condition of hypoxia at high altitudes. Water electrolysis is used mainly for the production of hydrogen with oxygen as a by-product. In order to use this system only for oxygen production, hydrogen must be utilised and disposed off safely. This, however, is not practical in many instances where there is no use for hydrogen and it poses an explosion hazard. In this paper, an electrolyser system based on polymer electrolyte membrane is described in which hydrogen produced on one side of the electrochemical cell is consumed by combining it with atmospheric oxygen, through operating the cell in a carefully configured fuel cell mode. This reduces the power consumed in the electrolysis operation by more than 35% and eliminates hydrogen in exit gases. Oxygen generated is of high quality and can be used for human consumption (portable and plug-in home care oxygen therapy devices, in hospitals, defence or aerospace requirements) and for many other industrial applications.  相似文献   

5.
Photodynamic therapy (PDT) is a noninvasive medical technique that has received increasing attention over the last years and been applied for the treatment of certain types of cancer. However, the currently clinically used PDT agents have several limitations, such as low water solubility, poor photostability, and limited selectivity towards cancer cells, aside from having very low two‐photon cross‐sections around 800 nm, which limits their potential use in TP‐PDT. To tackle these drawbacks, three highly positively charged ruthenium(II) polypyridyl complexes were synthesized. These complexes selectively localize in the lysosomes, an ideal localization for PDT purposes. One of these complexes showed an impressive phototoxicity index upon irradiation at 800 nm in 3D HeLa multicellular tumor spheroids and thus holds great promise for applications in two‐photon photodynamic therapy.  相似文献   

6.
光动力学疗法是应用光敏剂受激光激发后对靶体产生光化学作用来治疗病变。光漂白是光动力学治疗过程中普遍现象,在光动力疗法治疗血管类疾病中,光敏剂与血浆中的生物分子相互作用及其在血管中的光漂白行为直接关系到治疗效果。本文考察了HB和THB与血浆的作用和在血浆溶液中的光漂白过程,研究表明在富氧条件下,以单重态氧漂白为主;在有血浆生物分子溶液中光产物与水溶液中的光产物不同。研究表明光敏剂的结构和氧化电位导致了它们不同的光漂白机制,HB和THB与生物分子的相互作用加速了它们光漂白并影响了光产物。  相似文献   

7.
New β-fused uracil-porphyrin conjugates were synthesized by the tetramerization of uracil-pyrroles under acidic conditions. Two different synthetic approaches were systematically studied in order to evaluate their efficiency, as well as the possibility to obtain a single regioisomer. Metallation effects were studied for aggregation in solution, and preliminary photophysical experiments were also performed in order to evaluate the potential of these new compounds.  相似文献   

8.
Despite its clinical promise, photodynamic therapy (PDT) suffers from a key drawback associated with its oxygen‐dependent nature, which limits its effective use against hypoxic tumors. Moreover, both PDT‐mediated oxygen consumption and microvascular damage further increase tumor hypoxia and, thus, impede therapeutic outcomes. In recent years, numerous investigations have focused on strategies for overcoming this drawback of PDT. These efforts, which are summarized in this review, have produced many innovative methods to avoid the limits of PDT associated with hypoxia.  相似文献   

9.
Novel non‐aggregated boron–fluorine derivatives with large Stokes shift were facilely synthesized and characterized. These dyes show moderate absorptive coefficients and intense fluorescence emission, and excellent photo‐stability in solvents and also in solid state. According to X‐ray single‐crystal analysis, non‐covalent intermolecular interactions provide a rigid structure, which inhibits aggregate formation. These non‐aggregated dyes can generate singlet oxygen under light irradiation, which makes them good candidates for photodynamic therapy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The use of nanoparticles has been investigated as a new cancer treatment. These can induce specific cytotoxicity in cancer cells. In particular, Au nanoparticles (AuNPs) have unique characteristics. The maximum absorption spectrum of AuNPs can be adjusted to modify their size or shape to absorb near-infrared light that can penetrate into tissue without photodamage. Thus, the combination of AuNPs and near-infrared light can be used to treat cancer in deep-seated organs. To obtain effective cancer-specific accumulation of AuNPs, we focused on porphyrin and synthesized a porphyrin-attached Au compound: Au-HpD. In this study, we investigated whether Au-HpD possesses cancer-specific accumulation and cytotoxicity. Intracellular Au-HpD accumulation was higher in cancer cells than in normal cells. In order to analyze the cytotoxicity induced by Au-HpD, cancer cells and normal cells were co-cultured in the presence of Au-HpD; then, they were subjected to 870 nm laser irradiation. We observed that, after laser irradiation, cancer cells showed significant morphological changes, such as chromatin condensation and nuclear fragmentation indicative of cell apoptosis. This strong effect was not observed when normal cells were irradiated. Moreover, cancer cells underwent cell apoptosis with combination therapy.  相似文献   

11.
A novel zinc(II) phthalocyanine conjugated with a short peptide with a nuclear localization sequence, Gly‐Gly‐Pro‐Lys‐Lys‐Lys‐Arg‐Lys‐Val, was synthesized by click chemistry and a standard Fmoc solid‐phase peptide synthesis protocol. The conjugate was purified by HPLC and characterized with UV/Vis and high‐resolution mass spectroscopic methods. Both this compound and its non‐peptide‐conjugated analogue are essentially non‐aggregated in N,N‐dimethylformamide and can generate singlet oxygen effectively with quantum yields (ΦΔ) of 0.84 and 0.81, respectively, relative to unsubstituted zinc(II) phthalocyanine (ΦΔ=0.56). Conjugation of the peptide sequence, however, can enhance the cellular uptake, efficiency in generating intracellular reactive oxygen species, and photocytotoxicity of the phthalocyanine‐based photosensitizer against HT29 human colorectal carcinoma cells. The IC50 value of the conjugate is as low as 0.21 μM . In addition, the conjugate shows an enhanced tumor‐retention property in tumor‐bearing nude mice. After 72 h post‐injection, the dye concentration in the tumor was significantly higher than that in other organs. The results suggest that this phthalocyanine–peptide conjugate is a highly promising photosensitizer for photodynamic therapy.  相似文献   

12.
A zinc(II) phthalocyanine substituted with a 2,4‐dinitrobenzenesulfonate group has been prepared. Its fluorescence emission and reactive oxygen species generation can be greatly enhanced by glutathione in phosphate‐buffered saline and inside MCF‐7 cells. This compound thus functions as a highly efficient molecular‐based activatable photosensitizer.  相似文献   

13.
A range of lipo- and hydrophilic derivatives of the new class of octaalkynyl tetra-[6,7]-quinoxalinoporphyrazines (TQuiPors), analogues of the naphthalocyanines, were prepared in two steps starting from functionalised hexa-1,5-diyne-3,4-diones. Divalent zinc and magnesium ions were introduced into the macrocyclic core. Whereas the triisopropylsilyl-, 3,5-di-tert-butylphenyl- and 4-triisopropylsilyloxyphenyl-terminated acetylenic TQuiPors are lipophilic and hence soluble in standard organic solvents, a polyethylene glycol-substituted derivative was found to dissolve in DMSO as well as in ethanol/water mixtures. The new chromophores are characterised by intense UV/Vis/NIR absorptions, most notably by bands at 770 nm with extinction coefficients exceeding 500 000 M(-1) cm(-1). With a view to possible photodynamic therapy applications, the potency of the chromophores to sensitise the formation of singlet oxygen was examined, both qualitatively using a 1,3-diphenylisobenzofuran assay, and quantitatively by the determination of the singlet oxygen quantum yields. It was found that all TQuiPors produce singlet oxygen when irradiated in the presence of air. In particular, the octaalkynyl Zn-TQuiPor generates singlet oxygen with a quantum yield of 56 %, thereby rivalling, and, in conjunction with its absorption profile, even exceeding the standards set by established PDT agents. The photostabilities of the TQuiPors were assessed and generally found to be satisfactory, but dependent on the solvent and the wavelength of the incident light.  相似文献   

14.
刘恺  刘进  席超  靳溪 《化学教育》2017,38(6):1-4
光动力治疗日益受到关注。本文综述了光敏剂在光动力疗法领域中的研究进展,包括它的性能改进、作用机理和靶点。并对光动力疗法的发展前景进行了展望。  相似文献   

15.
Photodynamic therapy (PDT) for cancer treatment has garnered tremendous attention with its promising non-invasiveness, low side effects, and spatiotemporal selectivity. However, the hypoxic microenvironment in solid tumours remains a serious resistant factor to reducing the effects of PDT. Endoperoxides are successfully utilized as the chemical storage or supplier of singlet oxygen (1O2), the active substance for PDT in materials and other domains. Recent reports indicated that this type of compound could remarkably enhance the therapeutic effects of PDT under hypoxia. This concept mainly introduces a few representative endoperoxides and the outlook of their potent application for treating hypoxic cancer cells.  相似文献   

16.
The synthesis of ruthenium(II) phthalocyanines (RuPcs) endowed with one carbohydrate unit—that is, glucose, galactose and mannose—and a dimethylsulfoxide (DMSO) ligand at the two axial coordination sites, respectively, is described. Two series of compounds, one unsubstituted at the periphery, and the other one bearing eight PEG chains at the isoindole meta-positions, have been prepared. The presence of the axial DMSO unit significantly increases the phthalocyanine singlet oxygen quantum yields, related to other comparable RuPcs. The compounds have been evaluated for PDT treatment in bladder cancer cells. In vitro studies have revealed high phototoxicity for RuPcs unsubstituted at their periphery. The phototoxicity of PEG-substituted RuPcs has been considerably improved by repeated light irradiation. The choice of the axial carbohydrate introduced little differences in the cellular uptake for both series of photosensitizers, but the phototoxic effects were considerably higher for compounds bearing mannose units.  相似文献   

17.
Although metal‐ion‐directed self‐assembly has been widely used to construct a vast number of macrocycles and cages, it is only recently that the biological properties of these systems have begun to be explored. However, up until now, none of these studies have involved intrinsically photoexcitable self‐assembled structures. Herein we report the first metallomacrocycle that functions as an intracellular singlet oxygen sensitizer. Not only does this Ru2Re2 system possess potent photocytotoxicity at light fluences below those used for current medically employed systems, it offers an entirely new paradigm for the construction of sensitizers for photodynamic therapy.  相似文献   

18.
The photosensitized generation of singlet oxygen within tumor tissues during photodynamic therapy (PDT) is self‐limiting, as the already low oxygen concentrations within tumors is further diminished during the process. In certain applications, to minimize photoinduced hypoxia the light is introduced intermittently (fractional PDT) to allow time for the replenishment of cellular oxygen. This condition extends the time required for effective therapy. Herein, we demonstrated that a photosensitizer with an additional 2‐pyridone module for trapping singlet oxygen would be useful in fractional PDT. Thus, in the light cycle, the endoperoxide of 2‐pyridone is generated along with singlet oxygen. In the dark cycle, the endoperoxide undergoes thermal cycloreversion to produce singlet oxygen, regenerating the 2‐pyridone module. As a result, the photodynamic process can continue in the dark as well as in the light cycles. Cell‐culture studies validated this working principle in vitro.  相似文献   

19.
Strong oxygen dependence and limited penetration depth are the two major challenges facing the clinical application of photodynamic therapy (PDT). In contrast, ionizing radiation is too penetrative and often leads to inefficient radiotherapy (RT) in the clinic because of the lack of effective energy accumulation in the tumor region. Inspired by the complementary advantages of PDT and RT, we present herein the integration of a scintillator and a semiconductor as an ionizing‐radiation‐induced PDT agent, achieving synchronous radiotherapy and depth‐insensitive PDT with diminished oxygen dependence. In the core–shell CeIII‐doped LiYF4@SiO2@ZnO structure, the downconverted ultraviolet fluorescence from the CeIII‐doped LiYF4 nanoscintillator under ionizing irradiation enables the generation of electron–hole (e?–h+) pairs in ZnO nanoparticles, giving rise to the formation of biotoxic hydroxyl radicals. This process is analogous to a type I PDT process for enhanced antitumor therapeutic efficacy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号