首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystal polymorphism in the antitumor drug temozolomide (TMZ), cocrystals of TMZ with 4,4′‐bipyridine‐N,N′‐dioxide (BPNO), and solid‐state stability were studied. Apart from a known X‐ray crystal structure of TMZ (form 1), two new crystalline modifications, forms 2 and 3, were obtained during attempted cocrystallization with carbamazepine and 3‐hydroxypyridine‐N‐oxide. Conformers A and B of the drug molecule are stabilized by intramolecular amide N? H???Nimidazole and N? H???Ntetrazine interactions. The stable conformer A is present in forms 1 and 2, whereas both conformers crystallized in form 3. Preparation of polymorphic cocrystals I and II (TMZ?BPNO 1:0.5 and 2:1) were optimized by using solution crystallization and grinding methods. The metastable nature of polymorph 2 and cocrystal II is ascribed to unused hydrogen‐bond donors/acceptors in the crystal structure. The intramolecularly bonded amide N–H donor in the less stable structure makes additional intermolecular bonds with the tetrazine C?O group and the imidazole N atom in stable polymorph 1 and cocrystal I, respectively. All available hydrogen‐bond donors and acceptors are used to make intermolecular hydrogen bonds in the stable crystalline form. Synthon polymorphism and crystal stability are discussed in terms of hydrogen‐bond reorganization.  相似文献   

2.
A series of fluorescent imidazolium‐based salts containing the cation [AnCH2MeIm]+ (in which An=anthracene and Im=the imidazolium cation) with Cl?, BF4?, PF6?, SO3CF3?, [N(CN)2]?, [N(SO2CF3)2]?, or PhBF3? anions have been prepared and characterized. X‐ray diffraction analysis of four of the salts reveals a number of C? H???X‐type (X=O, N, F) hydrogen bonds between the hydrogen atoms from the imidazolium ring and in some cases from the anthracene ring with the electronegative atoms of the anions. Additionally, C? H???π interactions can be found in all the salts analyzed by X‐ray diffraction, whereas π–π stacking is observed only in the salt containing the phenyltrifluoroborate anion. Fluorescence emission analysis in acetonitrile shows that the fluorescence of these salts varies significantly according to the nature of the anion, and correlates to the extent of ion pairing present in solution. Photodimerization of these salts was observed, and in one case a dimer has been isolated and characterized by X‐ray crystallography.  相似文献   

3.
The δ polymorph of sulfanilamide (or 4‐aminobenzenesulfonamide), C6H8N2O2S, displays an overall three‐dimensional hydrogen‐bonded network that is dominated by a two‐dimensional substructure with R22(8) rings; these result from dimeric N—H...O interactions between adjacent sulfonamide groups. This study shows how the polymorphism of sulfanilamide is linked to its versatile hydrogen‐bonding capabilities.  相似文献   

4.
The rotational spectra of four isotopologues of the 1:1 complex between chloromethane and water revealed the presence of only one rotamer in a pulsed jet expansion. The two subunits are linked through two weak hydrogen bonds, O? H???Cl (RH???Cl=2.638(2) Å) and C? H???O (RH???O=2.501(2) Å), forming a five‐membered ring. All transitions display the hyperfine structure due to the 35Cl (or 37Cl) nuclear quadrupole effects. Dynamical features in the spectrum are caused by two large‐amplitude motions. Each component line appears as an asymmetric doublet with a relative intensity ratio of 1:3. The splittings led to the determination of barrier to internal rotation of water around its symmetry axis, V2=320(10) cm?1. Finally, an unexpected small value of the inertial defect (?0.96 uÅ2 rather than ?3.22 uÅ2) allowed the estimation of the barrier to the internal rotation of the CH3 group, V3≈8 cm?1.  相似文献   

5.
In the benzene and phenol solvates of (S)‐4‐{3‐[2‐(dimethylamino)ethyl]‐1H‐indol‐5‐ylmethyl}oxazolidin‐2‐one, viz. C16H21N3O2·C6H6, (I), and C16H21N3O2·C6H5OH, (II), the host molecule has three linked residues, namely a planar indole ring system, an ethylamine side chain and an oxazolidinone system. It has comparable features to that of sumatriptan, although the side‐chain orientations of (I) and (II) differ from those of sumatriptan. Both (I) and (II) have host–guest‐type structures. The host molecule in (I) and (II) has an L‐shaped form, with the oxazolidinone ring occupying the base and the remainder of the molecule forming the upright section. In (I), each benzene guest molecule is surrounded by four host molecules, and these molecules are linked by a combination of N—H...N, N—H...O and C—H...O hydrogen bonds into chains of edge‐fused R44(33) rings. In (II), two independent molecules are present in the asymmetric unit, with similar conformations. The heterocyclic components are connected through N—H...N, N—H...O and C—H...O interactions to form chains of edge‐fused R64(38) rings, from which the phenol guest molecules are pendent, linked by O—H...O hydrogen bonds. The structures are further stabilized by extensive C—H...π interactions.  相似文献   

6.
4‐Fluorinated levoglucosans were synthesised to test if OH???F H‐bonds are feasible even when the O???F distance is increased. The fluorinated 1,6‐anhydro‐β‐D ‐glucopyranoses were synthesised from 1,6 : 3,4‐dianhydro‐β‐D ‐galactopyranose ( 8 ). Treatment of 8 with KHF2 and KF gave 43% of 4‐deoxy‐4‐fluorolevoglucosan ( 9 ), which was transformed into the 3‐O‐protected derivatives 13 by silylation and 15 by silylation, acetylation, and desilylation. 4‐Deoxy‐4‐methyllevoglucosan ( 19 ) and 4‐deoxylevoglucosan ( 21 ) were prepared as reference compounds that can only form a bivalent H‐bond from HO? C(2) to O? C(5). They were synthesised from the iPr3Si‐protected derivative of 8 . Intramolecular bifurcated H‐bonds from HO? C(2) to F? C(4) and O? C(5) of the 4‐fluorinated levoglucosans in CDCl3 solution are evidenced by the 1H‐NMR scalar couplings h1J(F,OH) and 3J(H,OH). The OH???F H‐bond over an O???F distance of ca. 3.0 Å is thus formed in apolar solvents, at least when favoured by the simultaneous formation of an OH???O H‐bond.  相似文献   

7.
The title compound, [Cu(C7H5O3)2(C6H6N2O)2(H2O)2], is a two‐dimensional hydrogen‐bonded supramolecular complex. The CuII ion resides on a centre of symmetry and is in an octahedral coordination environment comprising two pyridine N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N—H...O and O—H...O hydrogen bonds produce R22(4), R22(8) and R22(15) rings which lead to one‐dimensional polymeric chains. An extensive two‐dimensional network of N—H...O and O—H...O hydrogen bonds and C—H...π interactions are responsible for crystal stabilization.  相似文献   

8.
NMR spectroscopic studies of the catalytic addition reaction of ZnEt2 to PhC(O)CF3 in the presence of three very efficient catalysts [TMEDA, tBuBOX, and L ; where L is a chiral diamine synthesized from optically pure (R,R)‐1,2‐diphenylethylenediamine and (S)‐2,2′‐bis‐(bromomethyl)‐1,1′‐binaphthalene] reveal large differences in their behavior. For the ligands TMEDA and tBuBOX, the catalysis shows no unusual features and proceeds via [(N?N)Zn(Et){OC(CF3)(Et)Ph}]. For N?N? L , the observation of autocatalytic asymmetric enhancement during the catalysis, and unusual inverse concentration dependence on the reaction rate, indicate the participation of an additional novel catalytic cycle that goes through a dinuclear intermediate containing one ZnEt2 and one ZnEt fragment connected by N?N and OR bridges. Interestingly, the 19F NMR signals of the main product of the reaction ([Zn(Et){OC*(CF3)(Et)Ph}]2) allowed us to assess the enantioselectivity of the processes in situ without the assistance of chiral chromatography.  相似文献   

9.
The title compound, [Co(C7H5O3)2(C6H6N2O)2(H2O)2], forms a three‐dimensional hydrogen‐bonded supramolecular structure. The CoII ion is in an octahedral coordination environment comprising two pyridyl N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N—H...O and O—H...O hydrogen bonds produce R22(8), R22(12) and R22(14) rings, which lead to two‐dimensional chains. An extensive three‐dimensional supramolecular network of C—H...O, N—H...O and O—H...O hydrogen bonds and C—H...π interactions is responsible for crystal structure stabilization. This study is an example of the construction of a supramolecular assembly based on hydrogen bonds in mixed‐ligand metal complexes.  相似文献   

10.
A series of [Au2(nixantphos)2](X)2 (nixantphos=4,6‐bis(diphenylphosphino)‐phenoxazine; X=NO3, 1 ; CF3COO, 2 ; CF3SO3, 3 ; [Au(CN)2], 4 ; and BF4, 5 ) complexes that exhibit intriguing anion‐switchable and stimuli‐responsive luminescent photophysical properties have been synthesized and characterized. Depending on their anions, these complexes display yellow ( 3 ), orange ( 4 and 5 ), and red ( 1 and 2 ) emission colors. They exhibit reversible thermo‐, mechano‐, and vapochromic luminescence changes readily perceivable by the naked eye. Single‐crystal X‐ray studies show that the [Au2(nixantphos)2]2+ cations with short intramolecular Au ??? Au interactions are involved as donors in an infinite N?H ??? X (X=O and N) hydrogen‐bonded chain formation with CF3COO? ( 2 C ) and aurophilically linked [Au(CN)2]? counterions ( 4 C ). Both crystals show thermochromic luminescence; their room temperature red ( 2 C ) and orange ( 4 C ) emission turns into yellow upon cooling to 77 K. They also exhibit reversible mechanochromic luminescence by changing their emission color from red to dark ( 2 C ), and orange to red ( 4 C ). Compounds 1 – 5 also display reversible mechanochromic luminescence, altering their emission colors between orange ( 1 ) or red ( 2 ) to dark, as well as between yellow ( 3 ) or orange ( 4 and 5 ) to red. Detailed photophysical investigations and correlation with solid‐state structural data established the significant role of N?H ??? X interactions in the stimuli‐responsive luminescent behavior.  相似文献   

11.
The thiourea S,S‐dioxide molecule is recognized as a zwitterion with a high dipole moment and an unusually long C? S bond. The molecule has a most interesting set of intermolecular interactions in the crystalline state—a relatively strong O???H? N hydrogen bond and very weak intermolecular C???S and N???O interactions. The molecule has Cs symmetry, and each oxygen atom is hydrogen‐bonded to two hydrogen atoms with O???H? N distances of 2.837 and 2.826 Å and angles of 176.61 and 158.38°. The electron density distribution is obtained both from Xray diffraction data at 110 K and from a periodic density functional theory (DFT) calculation. Bond characterization is made in terms of the analysis of topological properties. The covalent characters of the C? N, N? H, C? S, and S? O bonds are apparent, and the agreement on the topological properties between experiment and theory is adequate. The features of the Laplacian distributions, bond paths, and atomic domains are comparable. In a systematic approach, DFT calculations are performed based on a monomer, a dimer, a heptamer, and a crystal to see the effect on the electron density distribution due to the intermolecular interactions. The dipole moment of the molecule is enhanced in the solid state. The typical values of ρb and Hb of the hydrogen bonds and weak intermolecular C???S and N???O interactions are given. All the interactions are verified by the location of the bond critical point and its associated topological properties. The isovalue surface of Laplacian charge density and the detailed atomic graph around each atomic site reveal the shape of the valence‐shell charge concentration and provide a reasonable interpretation of the bonding of each atom.  相似文献   

12.
The title compound anilinium chloride–4‐bromo‐N‐phenyl­benzene­sulfonamide (1/1), C6H8N+·Cl·C12H10BrNO2S, displays a hydrogen‐bonded ladder motif with four independent N—H⋯Cl bonds in which both the NH group of the sulfonamide molecule and the NH3 group of the anilinium ion [N⋯Cl = 3.135 (3)–3.196 (2) Å and N—H⋯Cl = 151–167°] are involved. This hydrogen‐bonded chain contains two independent R42(8) rings and each chloride ion acts as an acceptor of four hydrogen bonds.  相似文献   

13.
A study of the strong N?X????O?N+ (X=I, Br) halogen bonding interactions reports 2×27 donor×acceptor complexes of N‐halosaccharins and pyridine N‐oxides (PyNO). DFT calculations were used to investigate the X???O halogen bond (XB) interaction energies in 54 complexes. A simplified computationally fast electrostatic model was developed for predicting the X???O XBs. The XB interaction energies vary from ?47.5 to ?120.3 kJ mol?1; the strongest N?I????O?N+ XBs approaching those of 3‐center‐4‐electron [N?I?N]+ halogen‐bonded systems (ca. 160 kJ mol?1). 1H NMR association constants (KXB) determined in CDCl3 and [D6]acetone vary from 2.0×100 to >108 m ?1 and correlate well with the calculated donor×acceptor complexation enthalpies found between ?38.4 and ?77.5 kJ mol?1. In X‐ray crystal structures, the N‐iodosaccharin‐PyNO complexes manifest short interaction ratios (RXB) between 0.65–0.67 for the N?I????O?N+ halogen bond.  相似文献   

14.
The resonance character of Cu/Ag/Au bonding is investigated in B???M?X (M=Cu, Ag, Au; X=F, Cl, Br, CH3, CF3; B=CO, H2O, H2S, C2H2, C2H4) complexes. The natural bond orbital/natural resonance theory results strongly support the general resonance‐type three‐center/four‐electron (3c/4e) picture of Cu/Ag/Au bonding, B:M?X?B+?M:X?, which mainly arises from hyperconjugation interactions. On the basis of such resonance‐type bonding mechanisms, the ligand effects in the more strongly bound OC???M?X series are analyzed, and distinct competition between CO and the axial ligand X is observed. This competitive bonding picture directly explains why CO in OC???Au?CF3 can be readily replaced by a number of other ligands. Additionally, conservation of the bond order indicates that the idealized relationship bB???M+bMX=1 should be suitably generalized for intermolecular bonding, especially if there is additional partial multiple bonding at one end of the 3c/4e hyperbonded triad.  相似文献   

15.
16.
In the structure of 2‐(4‐chloroanilino)‐1,3,2λ4‐diazaphosphol‐2‐one, C12H11ClN3OP, each molecule is connected with four neighbouring molecules through (N—H)2…O hydrogen bonds. These hydrogen bonds form a tubular arrangement along the [001] direction built from R 33(12) and R 43(14) hydrogen‐bond ring motifs, combined with a C (4) chain motif. The hole constructed in the tubular architecture includes a 12‐atom arrangement (three P, three N, three O and three H atoms) belonging to three adjacent molecules hydrogen bonded to each other. One of the N—H groups of the diazaphosphole ring, not co‐operating in classical hydrogen bonding, takes part in an N—H…π interaction. This interaction occurs within the tubular array and does not change the dimension of the hydrogen‐bond pattern. The energies of the N—H…O and N—H…π hydrogen bonds were studied by NBO (natural bond orbital) analysis, using the experimental hydrogen‐bonded cluster of molecules as the input file for the chemical calculations. In the 1H NMR experiment, the nitrogen‐bound proton of the diazaphosphole ring has a high value of 17.2 Hz for the 2J H–P coupling constant.  相似文献   

17.
The nature of the S? H???S hydrogen‐bonding interaction in the H2S dimer and its structure has been the focus of several theoretical studies. This is partly due to its structural similarity and close relationship with the well‐studied water dimer and partly because it represents the simplest prototypical example of hydrogen bonding involving a sulfur atom. Although there is some IR data on the H2S dimer and higher homomers from cold matrix experiments, there are no IR spectroscopic reports on S? H???S hydrogen bonding in the gas phase to‐date. We present experimental evidence using VUV ionization‐detected IR‐predissociation spectroscopy (VUV‐ID‐IRPDS) for this weak hydrogen‐bonding interaction in the H2S dimer. The proton‐donating S? H bond is found to be red‐shifted by 31 cm?1. We were also able to observe and assign the symmetric (ν1) stretch of the acceptor and an unresolved feature owing to the free S? H of the donor and the antisymmetric (ν3) SH stretch of the acceptor. In addition we show that the heteromolecular H2S–MeOH complex, for which both S? H???O and O? H???S interactions are possible, is S‐H???O bound.  相似文献   

18.
Polymorph (Ia) (m.p. 474 K) of the title compound, C12H18N2O3, displays an N—H...O=C hydrogen‐bonded layer structure which contains R66(28) rings connecting six molecules, as well as R22(8) rings linking two molecules. The 3‐connected hydrogen‐bonded net resulting from these interactions has the hcb topology. Form (Ib) (m.p. 471 K) displays N—H...O=C hydrogen‐bonded looped chains in which neighbouring molecules are linked to one another by two different R22(8) rings. Polymorph (Ia) is isostructural with the previously reported form II of 5‐(2‐bromoallyl)‐5‐isopropylbarbituric acid (noctal) and polymorph (Ib) is isostructural with the known crystal structures of four other barbiturates.  相似文献   

19.
The rotational spectrum of formamide2–H2O formed in a supersonic jet has been characterized by Fourier‐transform microwave spectroscopy. This adduct provides a simple model of water‐mediated interaction involving the amide linkages, as occur in protein folding or amide‐association processes, showing the interplay between self‐association and solvation. Mono‐substituted 13C, 15N, 18O, and 2H isotopologues have been observed and their data used to investigate the structure. The adduct forms an almost planar three‐body sequential cycle. The two formamide molecules link on one side through an N?H???O hydrogen bond and on the other side through a water‐mediated interaction with the formation of C=O???H?O and O???H?N hydrogen bonds. The analysis of the quadrupole coupling effects of two 14N‐nuclei reveals the subtle inductive forces associated to cooperative hydrogen bonding. These forces are involved in the changes in the C=O and C?N bond lengths with respect to pure formamide.  相似文献   

20.
Enantiomerically pure triflones R1CH(R2)SO2CF3 have been synthesized starting from the corresponding chiral alcohols via thiols and trifluoromethylsulfanes. Key steps of the syntheses of the sulfanes are the photochemical trifluoromethylation of the thiols with CF3Hal (Hal=halide) or substitution of alkoxyphosphinediamines with CF3SSCF3. The deprotonation of RCH(Me)SO2CF3 (R=CH2Ph, iHex) with nBuLi with the formation of salts [RC(Me)? SO2CF3]Li and their electrophilic capture both occurred with high enantioselectivities. Displacement of the SO2CF3 group of (S)‐MeOCH2C(Me)(CH2Ph)SO2CF3 (95 % ee) by an ethyl group through the reaction with AlEt3 gave alkane MeOCH2C(Me)(CH2Ph)Et of 96 % ee. Racemization of salts [R1C(R2)SO2CF3]Li follows first‐order kinetics and is mainly an enthalpic process with small negative activation entropy as revealed by polarimetry and dynamic NMR (DNMR) spectroscopy. This is in accordance with a Cα? S bond rotation as the rate‐determining step. Lithium α‐(S)‐trifluoromethyl‐ and α‐(S)‐nonafluorobutylsulfonyl carbanion salts have a much higher racemization barrier than the corresponding α‐(S)‐tert‐butylsulfonyl carbanion salts. Whereas [PhCH2C(Me)SO2tBu]Li/DMPU (DMPU = dimethylpropylurea) has a half‐life of racemization at ?105 °C of 2.4 h, that of [PhCH2C(Me)SO2CF3]Li at ?78 °C is 30 d. DNMR spectroscopy of amides (PhCH2)2NSO2CF3 and (PhCH2)N(Ph)SO2CF3 gave N? S rotational barriers that seem to be distinctly higher than those of nonfluorinated sulfonamides. NMR spectroscopy of [PhCH2C(Ph)SO2R]M (M=Li, K, NBu4; R=CF3, tBu) shows for both salts a confinement of the negative charge mainly to the Cα atom and a significant benzylic stabilization that is weaker in the trifluoromethylsulfonyl carbanion. According to crystal structure analyses, the carbanions of salts {[PhCH2C(Ph)SO2CF3]Li? L }2 ( L =2 THF, tetramethylethylenediamine (TMEDA)) and [PhCH2C(Ph)SO2CF3]NBu4 have the typical chiral Cα? S conformation of α‐sulfonyl carbanions, planar Cα atoms, and short Cα? S bonds. Ab initio calculations of [MeC(Ph)SO2tBu]? and [MeC(Ph)SO2CF3]? showed for the fluorinated carbanion stronger nC→σ* and nO→σ* interactions and a weaker benzylic stabilization. According to natural bond orbital (NBO) calculations of [R1C(R2)SO2R]? (R=tBu, CF3) the nC→σ*S? R interaction is much stronger for R=CF3. Ab initio calculations gave for [MeC(Ph)SO2tBu]Li ? 2 Me2O an O,Li,Cα contact ion pair (CIP) and for [MeC(Ph)SO2CF3]Li ? 2 Me2O an O,Li,O CIP. According to cryoscopy, [PhCH2C(Ph)SO2CF3]Li, [iHexC(Me)SO2CF3]Li, and [PhCH2C(Ph)SO2CF3]NBu4 predominantly form monomers in tetrahydrofuran (THF) at ?108 °C. The NMR spectroscopic data of salts [R1(R2)SO2R3]Li (R3=tBu, CF3) indicate that the dominating monomeric CIPs are devoid of Cα? Li bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号