首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
S. S. Murzin 《JETP Letters》2008,88(11):745-746
Experimental data on the diagonal resistivity ρ xx of GaAs/AlGaAs heterostructures in a magnetic field at the filling factor ν = 1/2 have been compared with the existing theoretical predictions [B. I. Halperin et al., Phys. Rev. B 47, 7312 (1993) and F. Evers et al., Phys. Rev. B 60, 8951 (1999)]. The experimental results have been found to follow the relation ρ xx (1/2) ∝ n ?2 d ?1.64, which disagrees with the predictions.  相似文献   

2.
In the space-charge-limited current regime at T = 4.2 K, the magnetoresistance of PbSnTe:In/(111)BaF2 films has been studied at various mutual orientation of the magnetic field B (up to 4 T), electric field E (up to ~103 V/cm), and normal to the surface n. At Bn, the reduction of the current reaches a factor of ~105, whereas at BE, the current increases by a factor of ~103. The angular dependences of the magnetoresistance have been studied at the “rotation” of B in three different planes. The angular dependences of the magnetoresistance for the plane corresponding to the orientation BE exhibit local maxima near the orientations Bn, at which charge carriers are deflected by the magnetic field to one of the boundaries of the film. At the deviation to the free surface, the half-width of maxima is several degrees. At the deviation to the interface with the substrate, the half-width of maxima is about an order of magnitude larger and their amplitude is one or two orders of magnitude smaller. Possible mechanisms of giant positive and negative magnetoresistance, as well as the effect of the boundaries of the film on the angular dependences of the magnetoresistance, have been discussed.  相似文献   

3.
The magnetostriction and thermal expansion of rare-earth aluminoborate HoAl3(BO3)4 have been studied theoretically. The calculated field and temperature dependences of the multipole moments of the Ho3+ ion in HoAl3(BO3)4 made it possible to describe the known experimental data and to predict possible anomalies of thermal expansion. It has been shown that, for the direction of the field Bc, the nonmonotonic character of magnetostriction along the axis a is determined by the multipole moments, the main of which is β J O 4 0 〉. For Ba and Bb, the maximum moments are β J O 4 2 〉and α J O 2 2 〉; their variation with the field and temperature explain well the form of magnetostriction. It has been established that the greater value of magnetostriction Δa/a for Bb than for Ba and the greater value of magnetostriction for the field in the basal plane than for Bc are caused by greater variations in the field of actual multipole moments.  相似文献   

4.
Phonon thermal conductivities κ22 (?TC1) and κ33 (? TC3) of tellurium-doped bismuth with an electron concentration in the range 1.8 × 1019nL ≤ 1.4 × 1020 cm?3 were studied in the temperature interval 2 < T < 300 K. The temperature dependence of the phonon thermal conductivity obtained on doped bismuth samples of both orientations exhibits two maxima, one at a low temperature and the other at a high temperature. The effect of various phonon relaxation mechanisms on the dependence of both phonon thermal conductivity maxima on temperature, impurity concentration, and electron density is studied.  相似文献   

5.
Two new triradicals based on trovacene [η7-tropylium)vanadium(η5-cyclopentadienyl)], 1,3,5-tri([5]trovacenyl) benzene4 and 1,3,5-tri([5]trovacenyl)-6-methoxybenzene5 were prepared and their magnetic properties were studied by continuous-wave X-band electron paramagnetic resonance (EPR) spectroscopy and by temperature-dependent magnetic susceptometry. The EPR spectra of4 and5 in liquid toluene solution demonstrate that the three unpaired electrons localized on the vanadium atoms interact with each other in both complexes. The data from magnetic susceptometry revealed that the electron spins in both triradicals are antiferromagnetically coupled despite themeta-phenylene bridge. The exchange coupling constants are equal in the C3-symmetrical triradical4 (J=J′=?0.68 cm?1), which leads to a twofold degenerate spin ground state (spin frustration). The symmetry lowering by methoxy substitution of the benzene spacer in5 results in the effect of c ompeting interactions (J=?1.83 cm?1 andJ′=?2.38 cm?1). In addition to magnetocommunication, the effect of ring substitution on electrocommunication is also discernable. It manifests itself indisparate redox splittings δE 1/2 (0/?, ?/2?) and δE 1/2 (?/2?, 2?/3?) for5, while these parameters are equal for the C3-symmetrical trinuclear complex4.  相似文献   

6.
The transport coefficients of tellurium-doped n-Bi1 ? x Sb x semiconducting alloys (0.07 ≤ x ≤ 0.15) are studied for single-crystal samples in the temperature range 1.5 ≤ T ≤ 40 K and in magnetic fields 0 ≤ H < 20 kOe. The theory developed in this study attributes the specific features in the behavior of the transport coefficients observed in a magnetic field to a strong anisotropy of the electron spectrum and anisotropy in the electron relaxation time. It is found that the dependences of the transport coefficients on the magnetic field for HC 3 can be theoretically expressed through one anisotropy parameter δ, and those for HC 2, by means of several anisotropy parameters, namely, γ, η, ζ, and m 3/m 1. It is established that the anisotropy parameter δ in the n-Bi-Sb semiconducting alloys can be estimated from measurements of the electrical resistivity ρ22(∞)/ρ22(0) ? δ and the Hall coefficient R 12.3(∞)/R 12.3(H → 0) ? δ in a magnetic field HC 3. It is shown that the observed increase in the thermoelectric efficiency by a factor of 1.5–2.0 in the transverse magnetic fields HC 3 and HC 2 originates from the nonmonotonic dependence of the diffusion component of the thermopower Δα22(H)(?TC 1) on the magnetic field. The nonmonotonic dependence of the diffusion thermopower in n-Bi-Sb semiconducting alloys is associated with the strong anisotropy of the electron spectrum, the anisotropy in the electron relaxation time, and the many-valley pattern of the spectrum.  相似文献   

7.
A theory of thermodynamic properties of a spin density wave (SDW) in a quasi-two-dimensional system (with a preset impurity concentration x) is constructed. We choose an anisotropic dispersion relation for the electron energy and assume that external magnetic field H has an arbitrary direction relative to magnetic moment M Q . The system of equations defining order parameters M Q z , M Q σ , M z , and M σ is constructed and transformed with allowance for the Umklapp processes. Special cases when HM Q and HM Q (H Z H σ = 0) are considered in detail as well as cases of weak fields H of arbitrary direction. The condition for the transition of the system to the commensurate and incommensurate states of the SDW is analyzed. The concentration dependence of magnetic transition temperature T M is calculated, and the components of the order parameter for the incommensurate phase are determined. The phase diagram (T,~x) is constructed. The effect of the magnetic field on magnetic transition temperature T M is analyzed for H Z H σ = 0, and longitudinal magnetic susceptibility χ‖ is calculated; this quantity demonstrates the temperature dependence corresponding to a system with a gap for x < x c and to a gapless state for x > x c . In the immediate vicinity of the critical impurity concentration (xx c ), the temperature dependence of the magnetic susceptibility acquires a local maximum. The effect of anisotropy of the electron energy spectrum on the investigated physical quantities is also analyzed.  相似文献   

8.
The magnetic properties of an antiferromagnet with trigonal symmetry, namely, HoFe3(BO3)4, have been investigated theoretically. The calculations have been performed in the molecular field approximation and in the framework of the crystal field model for the rare-earth subsystem. Extensive experimental data on the magnetic properties of HoFe3(BO3)4 have been interpreted and good agreement between theory and experiment has been achieved using the obtained theoretical dependences. The spontaneous spin-reorientation transition and the spin-reorientation transition induced by a magnetic field Ba from the easy-axis to easy-plane state, as well as the spin-flop transition in a magnetic field Bc, have been described. It has been shown that the spontaneous spin-reorientation transition is a magnetic analog of the Jahn-Teller effect. The temperature dependences of the initial magnetic susceptibility at temperatures ranging from 2 to 300 K, the nonlinear curves of magnetization for Bc and Bc in a magnetic field up to 1.2 T (which indicate the occurrence of first-order phase transitions), and their evolution with variations in the temperature have been described, as well as the temperature and field dependences of the magnetization in a magnetic field up to 9 T. The parameters of the trigonal crystal field for the rare-earth ion Ho3+ and the parameters of the Fe-Fe and Ho-Fe exchange interactions have been determined in the course of interpretation of the experimental data.  相似文献   

9.
A new integral relationship between the fluctuations b(r, t) of a magnetic field and its mean B 0(r, t) is derived for the steady-state magnetic field in a turbulent medium. This formula provides the estimate 〈b?curlb〉=?B 0?curlB 0. Simultaneously, the coefficient of amplification of the mean magnetic field α effect) is obtained: α=(η+β)B 0? curlB 0/B 0 2 . The formula for α allows for a decrease in this coefficient owing to the back action of the magnetic field on the turbulent velocity field. It is shown that the Zel’dovich’s estimate 〈 b 2〉?β/η B 0 2 for two-dimensional turbulence holds for magnetic fields at the instant the fluctuations 〈a 2〉 of the vector potential, rather than 〈b 2〉, reach a maximum. Here, η and β are the ohmic (molecular) and turbulent diffusion coefficients, respectively. This estimate is refined with allowance made for the fact that the condition for diffusion approximation itself relates the β, b, and B 0 quantities to each other.  相似文献   

10.
The theory of spatial dispersion of dielectric and magnetic constants of magnetic uniaxial crystals based on generalized Maxwell’s equations D = ε?E = (ε + inγ E = ?ns × H and B = μ?H = (μ + inδ)H = ns × E with spatial dispersion parameters γ and δ is considered. Generalized Fresnel’s and polarization equations for the obtained vectors E, D, H, and B are analyzed for the wave normal direction sC (where C is the optic axis of a crystal). The possibility of the existence of a third natural wave in a crystal is proved.  相似文献   

11.
The structure, electrical resistivity, and magnetoresistance of La0.67Sr0.33MnO3 heteroepitaxial films (120-nm thick) practically unstrained by lattice mismatch with the substrate were studied. A strong maximum of negative magnetoresistance of ≈27% (for μ0H = 4 T) was observed at T ≈360 K. While the magnetoresistance decreased monotonically in magnitude with decreasing temperature, it was still in excess of 2% at 150 K. For T < 250 K, the temperature dependence of the electrical resistivity ρ of La0.67Sr0.33MnO3 films is fitted well by the relation ρ = ρ0 + ρ 1(H)T2.3, where ρ0 = 1.1×10?4 Ω cm, ρ1(H = 0) = 1.8×10?9 Ω cm/K2.3, and ρ10H = 4 T)/ρ1(H = 0) ≈0.96. The temperature dependence of a parameter γ characterizing the extent to which the electrical resistivity of the ferromagnetic phase of La0.67Sr0.33MnO3 films is suppressed by a magnetic field (μ 0H = 5 T) was determined.  相似文献   

12.
The 55Mn nuclear magnetic resonance spectrum of noncollinear 12-sublattice antiferromagnet Mn3Al2Ge3O12 has been studied in the frequency range of 200–640 MHz in the external magnetic field H ‖ [001] at T = 1.2 K. Three absorption lines have been observed in fields less than the field of the reorientation transition H c at the polarization hH of the rf field. Two lines have been observed at H > H c and hH. The spectral parameters indicate that the magnetic structure of manganese garnet differs slightly from the exchange triangular 120-degree structure. The anisotropy of the spin reduction and (or) weak antiferromagnetism that are allowed by the crystal symmetry lead to the difference of ≈3% in the magnetization of sublattices in the field H < H c. When the spin plane rotates from the orientation perpendicular to the C 3 axis to the orientation perpendicular to the C 4 axis, all magnetic moments of the electronic subsystem decrease by ≈2% from the average value in the zero field.  相似文献   

13.
New equations of motion for a Bloch electron [momentum p=h k,energy ε n(p),zone number n, charge -e]: $$m_j \frac{{dv_j }}{{dt}} = - e(E + v \times B)_j $$ are proposed, where vn(p)/?p is the velocity, and {mj}are the principal masses m j ? 1=?2εn/?p j 2 along the normal and the two principal axes of curvatures at each point of the constant-energy surface represented by εn(p).Their advantages over the prevalent equations of motion where the left-hand-side is replaced by hk j are demonstrated by examining de Haas-van Alphen oscillations and orientation-dependent cyclotron resonance peaks.  相似文献   

14.
The spin-spin interaction of Dy3+ ions in a KY(WO4)2 single crystal is investigated by electron paramagnetic resonance (EPR) spectroscopy at a temperature of 4.2 K and a frequency of 9.2 GHz. The EPR spectra of ion pairs located in different coordination shells are analyzed. It is revealed that the considerable contribution to the spin-spin interaction of the nearest neighbor ion pair nn is made not only by the magnetic dipole-dipole interaction but also by the isotropic exchange interaction with the parameter I nn = (+601 ± 17) × 10?4cm?1. The exchange interaction in pairs of more widely spaced ions is substantially weaker: I 5n = (?38 ± 3) × 10?4cm?1 and I 9n = (+18 ± 4) × 10?4cm?1. For the other ion pairs, the magnetic dipole-dipole interaction dominates. It is found that the EPR spectra of single ions and ion pairs exhibit a superhyperfine structure associated with tungsten nuclei.  相似文献   

15.
Resonant dislocation motions in NaCl(Ca) crystals under the simultaneous action of the Earth’s magnetic field B Earth (~66 μT) and a pulsed pump field $\tilde B$ of sufficient amplitude $\tilde B_m $ and certain duration τ have been detected and studied. The measured dislocation path peaks l(τ) have a maximum at τ = τ r ≈ 0.53 μs. The resonance criterion has been found to be the ordinary EPR condition in which the g-factor is close to 2 and the optimum inverse pulse duration τ r ?1 is used instead of the harmonic pump field frequency ν r . The largest peak l(τ) height is reached at mutually orthogonal dislocation (L) and magnetic field (B Earth and $\tilde B$ ) orientations. Pulsed field rotation to the position $\tilde B$ B Earth significantly decreases but does not “kill” the effect. For dislocations parallel to the Earth’s field (LB Earth), the resonance almost disappears even at $\tilde B$ B Earth. In the optimum geometry of experiments, as the pump field amplitude $\tilde B_m $ decreases from 17.6 to 10 μT, the path peak height l r = l r ) decreases only by 7.5%, remaining at the level of l r ~ 102 μm, and at a $\tilde B_m $ further fall-off to 4 μT, it rapidly decreases to background values. In this case, the relative density of mobile dislocations similarly decreases from ~90 to 40%. Possible physical mechanisms of the observed effect have been discussed.  相似文献   

16.
The upper critical field H c 2 (Hc) of the two-band superconductor MgB2 is studied as a function of the residual resistivity ρn. It is found that the superconductor follows the standard trend: the slope-dHc2/dT of the temperature dependence of Hc2(T) increases with the number of defects. The upper critical field in the clean limit is found, and direct estimations of the parameters of carriers in the 2D σ band (including the Fermi velocity and the coherence length) are made. The contribution of the electron scattering to the magnitude of Hc2 is determined, and the mean free path of electrons in samples with various defect concentrations is estimated. The density of states of σ electrons at the Fermi level is calculated using the dependence of the slope-dHc2/dT on ρn and a band structure model. It is impossible to estimate this density of states directly, because the upper critical field is determined by the carriers of one band, whereas the resistivity depends on the carriers in both bands.  相似文献   

17.
The contribution of clusters of different sizes to magnetism and the switching of electron scattering mechanisms in amorphous Fe67Cr18B15 alloy during ion Ar+ irradiation is studied. The cluster magnetism is found to be related to the presence of clusters of the following two types: large α-(Fe, Cr) clusters of size D = 150–250 Å and small (D = 40–80 Å) clusters in a random intercluster medium. The generation of small ferromagnetic and antiferromagnetic clusters during ion irradiation leads to the formation of cluster glass, which affects the electrical properties of the alloy and causes a magnetic frustration. The temperature dependence of the barrier height is shown to characterize the magnetic state of the alloy in low fields. On the whole, the temperature dependence of the order parameter is a universal characteristic of the system. The temperature dependence of resistivity of initial alloys in the temperature range 98–300 K (ρ(T) ∝ T2) is determined by electron scattering by quantum defects, and the transition into a ferromagnetic state is revealed when the derivative ?ρ/?TT is analyzed. The increase in resistivity and the relation ρ ∝ T1/2 in strongly inhomogeneous samples after irradiation at a dose Φ = 1.5 × 1018 ions/cm2 are caused by weak localization effects, and the transition to a ferromagnetic state becomes obvious when the derivative ?ρ/?T ∝ T–1/2 is considered. Irradiation by fluence Φ = 3 × 1018 ions/cm2 induces a giant (twofold) increase in the alloy density, restores the ferromagnetism of large clusters, decreases the resistivity by 37%, and restores the relation ρ(T) ∝ T2, which results from the overlapping of the irradiation-induced small clusters when their concentration increases and from an increase in the alloy density. The overlapping of clusters lowers the barrier height and decreases the sensitivity of the alloy to an applied field. The relation ρ(T) ∝ T2 is valid for the entire temperature range T = 2–300 K because of the partial screening of the magnetic moments of large clusters by a medium having the properties of cluster glass.  相似文献   

18.
The unmodulated and wavelength-modulated reflectivity spectra of CuGaS2 crystals for the polarization Ec, kc at 77 and 8 K have been studied. The states n=1, 2, and 3 of A excitons and n=1 and 2 of B and C excitons are established. The luminescence spectra from the surface at kc and kc are obtained. The fine structure of the reflectivity spectra of excitons are analyzed with due regard for the normal and oblique incidence of light onto the crystal surface. The main parameters of the A, B, and C excitonic series are determined such as the energies of the longitudinal and transverse excitons Γ4 (E ‖ c) for states n=1 and 2, the longitudinal and the transverse mass of excitons in CuGaS 2, and the effective masses of electrons (m c1*) and holes (m v1*, m v2*, m v3*). It is shown that the mass m v1* in the upper valence band at kc equals (0.7–0.8)m 0 and at kc, 1.87m 0.  相似文献   

19.
The phonon thermal electromotive force component α22 (?TC 1) prevails in n-Bi1 ? x Sbx (0.07≤x≤0.16) semiconducting alloys at low temperatures. This component increases by almost an order of magnitude in a classically strong transverse magnetic field H with HC 3, which results in an increase in thermoelectric efficiency. The transverse Nernst-Ettingshausen coefficient Q 12, 3 (?TC 1, HC 3) changes sign from negative at T > 10 K to positive at T < 10 K. The observed characteristics of the phonon thermal electromotive force and the phonon transverse Nernst-Ettingshausen coefficient are explained in terms of the theory of electron-phonon drag for electrons with a strongly anisotropic spectrum.  相似文献   

20.
The thermal electromotive force (emf) in Bi quantum wires has been calculated in the model of potential in the form of a paraboloid of revolution in a uniform magnetic field H, which is normal to the axis of the studied nanostructure, and in a direct-current (dc) electric field EH. It has been shown that, with an increase in E, the thermal emf α xx is described by a nonmonotonic function at different values of H. A physical interpretation of this behavior of α xx as a function of E is proposed with account for the interaction between carriers and the rough surface of the nanowire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号