首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The air-stable di-copper(I) complexes Cu2L(SCN)2 (1) and Cu2L(SCN)1.86I0.14 (2) of the N4 macrocyclic Schiff base ligand L have been synthesized and characterized by IR, elemental analysis, UV-Vis and crystal structure determination. X-ray analysis of the complexes shows an approximate distorted trigonal planar geometry around each copper(I) ion that is constructed from one N-bonded thiocyanate (or iodide in 2) group and two imine nitrogen atoms. DFT calculations were used to determine the structural features of the Cu2L(SCN)2 complex, and these were consistent with the experimental data for the complex.  相似文献   

2.
In this work we detail our efforts to systematically generate stable dicoordinate CuII complexes. Initial experiments via metathesis reactions of a bulky potassium carbazolide (RK) with copper(II) salts indeed yielded a stable product, RCuOTf ( 1 ). However, subsequent attempts to grasp systematic synthetic access to complexes of the type RCuX (X=monoanionic ligand) proved difficult as many of the complexes rapidly decomposed in solution. By using triflate-related ligands such as ethyl sulfate and bistriflimide, the additional dicoordinate copper complexes RCuOSO3Et ( 2 ), [RCu(THF)][Cu(NTf2)2] ( 3 ) and RCuNTf2 ( 4 ) could be isolated. Spectroscopic indications corroborate more CuI than CuII character in all RCuX derivatives.  相似文献   

3.
Reaction of a macrocyclic copper(II) complex [Cu(L)](ClO4)2 · 3H2O (I) (L = 1,3,10,12,16,19-hexaazatetracyclotetracosane) with a hexapod carboxylate ligand H6TTHA (H6TTHA = 1,3,5-triazine-2,4,6-triamine hexaacetic acid) and a tripod carboxylate ligand H3TATB (H3TATB = 4,4′,4″-S-triazine-2,4,6-triyl-tribenzoic acid) yielded two mononuclear copper(II) complexes [Cu(L)][H4TTHA] · 4H2O (II) and [Cu(L)][HTATB] · 4H2O (III). The complexes I–III have been structurally characterized. The crystal structures of complexes II and III show the copper(II) ion has a distorted pentacoordinate square-pyramidal geometry with two secondary and two tertiary amines from the macrocyclic complex [Cu(L)]2+ and one oxygen atom from the carboxylate ligand group at the axial position. The UV-Vis spectra are utilized to discuss the hydrolysis of the complex II.  相似文献   

4.
The reaction of copper(II) perchlorate with the hydrochloride salt of 3,6,9,15-tetra-azabicyclo[9.3.1]penta-deca-1,11,13-triene (L1) in acetonitrile forms two macrocyclic complexes that can be characterized: [L1CuIICl][ClO4] (1) and [L1CuIICl]2[CuCl4] (2). The structural, electronic, and redox properties of these complexes were studied using spectroscopy (EPR and UV–visible) and electrochemistry. In addition, the solid-state structure of 1 was obtained using X-ray diffraction. The copper(II) is five-coordinate ligated by four N-atoms of the macrocycle and a chloride atom. EPR studies of 1 both in DMF and aqueous solution indicate the presence of a single copper(II) species. In contrast, EPR studies of 2 performed in frozen DMF and in the solid-state reveal the presence of two spectroscopically distinct copper(II) complexes assigned as [L1CuIICl]+ and [CuIICl4]2?. Lastly, electrochemical studies demonstrate that both [L1CuIICl]+ and [CuIICl4]2? are redox active. Specifically, the [L1CuIICl]+ undergoes a quasi-reversible Cu(II)/(I) redox reaction in the absence of excess chloride. In the presence of chloride, however, the chemical irreversibility of this couple becomes evident at concentrations of chloride that exceed 50 mM. As a result, the presence of chloride from the chemical equilibrium of this latter species impedes the reversibility of the reduction of [L1CuIICl]+ to [L1CuICl]0.  相似文献   

5.
Asymmetrical macrocyclic complexes of MnII, CoII, NiII, CuII and ZnII have been synthesized by the template process using bis(benzil)ethylenediamine as precursor. Bis(benzil)ethylenediamine reacts with transition metal chlorides and trimethoprim in a 1:1:1 molar ratio in methanol to give several solid metal complexes of the general composition [M(L)X2] (M = MnII, CoII, NiII, CuII and ZnII, L = ligand and X = Cl?). They were characterized by physicochemical and spectroscopic techniques. Based on analytical, spectral and magnetic moments, all the complexes are identified as distorted octahedral structures. All the complexes are of the [M(L)X2] type. The shifts of the ν(CN) (azomethine) stretches have been monitored. To find out the donor sites of the ligands, the activity data show that the metal complexes are more potent than the parent ligand. The [M(L)X2] complexes showed a broad spectrum of antimicrobial activity in vitro against both gram-positive and gram-negative human pathogenic bacterial isolates and the antimicrobial spectrum enhanced only with a combination of metal chlorides and trimethoprim complex. From the results it is imperative that the synthesized macrocyclic [M(L)X2] complexes exhibit potent broad spectrum antibacterial activity.  相似文献   

6.
A family of macrocyclic complexes [M2LnCl2] have been synthesized and characterized (M: CuII or ZnII; Ln: macrocyclic ligand derived from 2-hydroxy-5-methyl-1,3-benzenedicarbaldehyde and different aliphatic diamines and o-phenylenediamine). The influence of the aromaticity of the ligand and the metal center on the spectroscopic properties of the complexes (absorption and emission) has been studied. Making use of the weak interactions between hydrated potassium ions and the layers of the K0.4Mn0.8PS3 precursor, the obtained macrocyclic complexes have been intercalated in the interlamellar space by a microwave assisted cationic exchange reaction. The optical properties of the obtained hybrid materials are reported. The absorption edge, recorded by solid state reflectance spectroscopy for CuII and the ZnII macrocycle-based composites, is 1.67–1.76 eV, both shifted to lower energy compared with that of the pristine MnPS3.  相似文献   

7.
The copper(II/I) complexes of hexathiaether macrocyclic ligand, 1,4,8,11,15,18-hexathiacyclohenicosane ([21]aneS6), were synthesized, and characterized by electrochemical and spectroscopic techniques. Cyclic voltammetric studies indicate that Cu([21]aneS6)2+/+ forms a reversible one-electron redox couple. The electrochemical potential obtained for Cu([21]aneS6)2+/+ (Ef = 0.89 V, against SHE) was found to be the highest potential reported to date for a Cu2+/+ macrocyclic system in aqueous solution. By employing the Nernst equation, we can infer that the practical upper limit for formal potential of Cu(II/I)L systems maybe close to this high value. Stability constant data obtained for these complexes indicate that Cu([21]aneS6)+is 12 orders of magnitude greater in stability than that of Cu([21]aneS6)2+ indicating the favorable nature of this large macrocyclic ligand towards formation of Cu(I) complexes over Cu(II) complexes. Crystal structure of Cu([21]aneS6)+ ( Fig. 2) shows that four sulfurs adjacent to one another are coordinated to Cu+ ion in this complex. Bond angles and distances calculated for the crystal indicate that it is a distorted tetrahedron, a geometry commonly encountered by Cu(I) complexes. This is the first report of synthesis and characterization of a metal coordinated [21]aneS6 complex.  相似文献   

8.
The chloride complexes of copper(II) (catalysts or catalyst precursors for various reactions of halogenated hydrocarbons) were characterized using electron, EPR, and EXAFS spectroscopy. It was found that chlorocuprates occur as mononuclear ([CuCl4]2–), binuclear ([Cu2Cl6]2–), and, probably, polynuclear species in chlorobenzene solutions. The Cu–Cl bond length in [CuCl4]2– is 2.25 ± 0.2 Å, which is close to the same values for crystalline tetrachlorocuprates. It was assumed that the chloride complexes of copper with counterions occur as globules in chlorobenzene.  相似文献   

9.
Complexation of the planar multidentate ligand 3,5-bis-(2-hydroxyphenyl)pyrazole (H 3 L) with manganese chloride leads to the formation of the polynuclear complex [Mn Ⅲ 8 L 4 O 4 (MeO) 4 (MeOH) 8 ] (1). 1 has an octanuclear macrocyclic core in which the MnⅢ ions are bridged by four L molecules to form a ring type structure. Antiferromagnetic interactions were shown to be operative between metal centers.  相似文献   

10.
A tetraazamacrocyclic ligand, L, containing six non-equivalent benzene rings, derived from the condensation of benzil with 1,2- diaminobenzene, has been isolated and its complexes [MLCl2] (M = Ni2+ and Cu2+) prepared and characterized by elemental analysis, i.r., u.v.–vis., e.p.r. spectral studies, magnetic moments, redox potentials and conductivity measurements. The complexes have axially elongated octahedral geometries with two axial chlorines, and adopt the trans-configuration. These studies also indicate the covalent nature and the high-spin octahedral structure for these complexes. A cyclic voltammetric investigation reveals that the complexes exhibit a single one-electron redox couple, as anticipated for a copper(II) complex (Cu2+/Cu+) and a single two-electron redox couple for a nickel(II) complex (Ni2+/Ni0). The electrochemical processes are considered quasi-reversible. Antimicrobial activities of the ligand and the complexes have been tested against Bacillus megaterium and Candida tropicallis.  相似文献   

11.
The syntheses of copper(II) complexes with neutral macrocyclic ligands 1,4,7,10,12,- 15,17,20,23,26,27,30-dodecaazadispiro[10·4·10·4]triacontane (DDST), 2,5,7,10,13,15,18,21,-23,26,29,32-dodecaazatricyclo[20·10·0·06,17]dotriacontane (DOCD) and 2,5,7,10,13,16,18,-21,23,26,29,32-dodecaaza-1,6,17,22-tetrachlorotricyclo[20·10·0·06,17]dotriacontane (DTTD) derived from triethylenetetramine, 1,2-diaminoethane and chlorocarbons (carbon tetrachloride, 1,l,2,2-tetrachloroethane and hexachloroethane, respectively) have been studied. Complexes [Cu3(DDST)]Cl6, [Cu3(DOCD)]Cl6 and [Cu3(DTTD)]Cl6?·?H2O and the copper ion-free ligand hydrochlorides DDST?·?12HCl and DOCD?·?12HCl are supported by elemental analyses, conductivity measurements and spectroscopic studies. Potentiometric equilibrium studies on DDST and DOCD hydrochlorides and their copper complexes also support the structures.  相似文献   

12.
Template reaction of copper(II) nitrate with N-(2-aminoethyl)-1,3-diaminopropane and formaldehyde yields a macrocyclic copper(II) complex of 1,3,6,10,12,15-hexaazatricyclo[13.3.1.16,10]eicosane (L), [CuL(NO3)2] (1). Replacement of nitrate with perchlorate gives [CuL(ClO4)2] (2). These complexes have been characterized by FT-IR and Raman spectroscopies, electronic absorption, cyclic voltammetry, and X-ray crystallography. The crystal structure of 1 shows that copper has distorted octahedral geometry with two secondary and two tertiary amines of the macrocycle and two oxygen atoms from nitrate coordinating the axial positions. The copper in 2 has the same geometry with axial positions occupied by one oxygen atom of perchlorate. Copper lies on the plane of four coordinated nitrogen atoms and there is no rms deviation from this plane. Cyclic voltammetry of 1 and 2 gives two one-electron waves corresponding to CuII/CuIII (?0.75,??0.72) and CuII/CuI (0.48, 0.24) processes. For understanding of geometry parameters in diazacyclam-based copper(II) complexes, a survey on complexes from CSD structures is presented. In this study the macrocycle hole size was estimated by ionic radii of metal ions located inside of it.  相似文献   

13.
Three copper(II) complexes, [Cu2(OAc)4L2] · 2CH3OH ( 1 ), [CuBr2L′2(CH3OH)] · CH3OH ( 2a ), and [CuBr2L′2(DMSO)] · 0.5CH3OH ( 2b ) {L = N‐(9‐anthracenyl)‐N′‐(3‐pyridyl)urea and L′ = N‐[10‐(10‐methoxy‐anthronyl)]‐N′‐(3‐pyridyl)urea} have been synthesized by the reaction of L with the corresponding copper(II) salts. Complex 1 shows a dinuclear structure with a conventional “paddlewheel” motif, in which four acetate units bridge the two CuII ions. In complexes 2a and 2b , the anthracenyl ligand L has been converted to an anthronyl derivative L′, and the central metal ion exhibits a distorted square pyramidal arrangement, with two pyridyl nitrogen atoms and two bromide ions defining the basal plane and the apical position is occupied by a solvent molecule (CH3OH in 2a and DMSO in 2b ).  相似文献   

14.
Summary Complexes of CuII, NiII, CoII, ZnII, CdII and HgII with 4-benzamido-1-o-aminoacetophenone-3-thiosemicarbazone (H2BATS) are reported and have been characterized by elemental analyses, molar conductivities, magnetic moments, spectral (visible, i.r.) and thermal (d.t.a., t.g., d.t.g.) measurements. I.r. spectra show that H2BATS behaves as a dianionic, monoanionic or neutral tetradentate ligand or as a monoanionic tridentate ligand. [Cu2(H2BATS)Cl2]·2H2O and [Cu2(H2BATS)Ac2]·2H2O complexes are diamagnetic while [Co(HBATS)OH]·2H2O and [Ni(HBATS)OH]·2H2O are octahedral. All the complexes are non-electrolytes. Generally, the solid metal acetate complexes have a unique decomposition exotherm profile which can be used as a rapid and sensitive tool for the detection of acetate-containing complexes.  相似文献   

15.
Four complexes, [Cu4L2(OCH3)2(CH3OH)2]·2H2O (1), [Zn2L2Cl4]·2H2O·2CH3OH (2), [Hg2L2Br4]·4CH3OH (3), and {[CdL2Cl2]·4H2O·4CH3OH}n (4), have been synthesized and characterized from a bis(pyridylhydrazone) ligand (L) with copper(II), zinc(II), mercury(II) or cadmium(II), respectively. Complex 1 exists as a centrosymmetric tetranuclear dimer with L as deprotonated tridentate ligand. Complexes 2 and 3 exist as centrosymmetric metallamacrocycles with L as bidentate ligand. Complex 4 exists as a 1D looped-chain coordination polymer. The thermal stabilities and vapor adsorption properties of the four complexes were investigated as well.  相似文献   

16.
The synthesis of the ligand, m-12N3O-dimer (1,3-bis(1-oxa-4,7,10-triazacyclododecan-7-yl)methyl)benzene, L), and the stability and hydrolysis constants of its dinuclear Zn(II) and Cu(II) complexes are reported, in addition to the effect of pH on HPNP (2-hydroxypropyl-4-nitrophenylphosphate) hydrolysis reaction rates promoted by these complexes. Various structural possibilities of the [Zn2L] and [Cu2L] hydrolytic species derived from solution equilibrium modeling are predicted from density functional theory (DFT) studies to correlate with the promoted HPNP hydrolysis reaction rates and to establish the structure–function–reactivity relationship. Upon deprotonation [Zn2L(OH)]3+ tends to form a structure with a “closed-form” conformation where it is not possible for para-isomers. At pH >8, the formation of the closed-form [Zn2L(OH)2]2+ and [Zn2L(μ-OH)(OH)2]+ species led to faster promoted HPNP hydrolysis rates than the [Zn2L(OH)]3+ species. On the other hand, the observed rates of the Cu2L-promoted HPNP hydrolysis reaction were much slower than those of the [Zn2L]-promoted ones due to formation of the inactive, di-μ-OH? bridged closed-form [Cu2L(μ-OH)2]2+ structure at high pH. The effects of solvent molecules and the use of higher DFT computation levels, i.e., M06 and M06–2X, in conjunction with cc-pVDZ and cc-pVTZ basis sets on the DFT-predicted structures for both [Cu(12N4)(H2O)]2+ and [Zn(12N3O)(H2O)2]2+ complexes were also evaluated and compared with those using the B3LYP/6–31G* method.  相似文献   

17.
Summary A 14-membered macrocyclic Schiff base derived from 3-salicylideneacetylacetone ando-phenylenediamine acts as a tetradentate and strongly conjugated ligand to form a cationic solid complex with CuCl2. U.v.-vis. and e.s.r. spectral data reveal a strong ligand to metal -interaction in the square planar complex. C.v. data reveal that the title ligand is able to stabilize the copper(III) oxidation state more effectively than comparable saturated or partially unsaturated macrocyclic ligands and confers a weaker tendency for reduction of copper(II) to copper(I) and copper(0). While the inclusion of a PPh3 ligand suppresses the Cu0 CuI CuII oxidation, imidazole and pyridine strongly enhance the CuII CuIII oxidation of the complex.  相似文献   

18.
Reactions of the macrocyclic ligand [L·2HClO4] with the reactants [Ir(CO)(Ph3P)2Cl] and [RuCl3(AsPh3)2CH3OH], produces bimetallic complexes with the stoichiometries [Ir2L(Ph3P)2Cl(ClO4)] (I) and [Ru2LCl4(ClO4)2] (II), respectively. Physico-chemical and spectroscopic data of the complexes confirms the encapsulation of two metal ions in the macrocyclic cavities via coordination through nitrogen atoms of the unsymmetrical aza groups, which results in homo-dinuclear macrocyclic complexes. The macrocyclic ligand has accommodated both the lower, Ir(I), and higher, Ru(III), oxidation states of metal ions, which shows the flexible nature and capability of macrocycle to form stable complexes. The mode of bonding and geometry of the complexes have been established on the basis of FT-IR, NMR, ligand field spectral, magnetic susceptibility and conductivity measurements. The thermodynamic first ionic association constants (K1), corresponding free energy change (ΔG) and other related parameters from conductometric studies using the Fuoss and Edelson method of complexes in DMSO have been determined and discussed.  相似文献   

19.
It has been stated in a preceding paper [3] that only parts of a ligand coordinated to a metal ion can be oxidized by H2O2 (= peroxidative activity). Considering the reversal of this statement to be true, it is shown by means of the peroxidative activity of the Cu2+-complexes of ATP, ITP, CTP, UTP, and TTP that in these complexes the heteroaromatic groups contribute to the coordination of Cu2+ ion. By analogy with the Cu2+-ATP-complex, where a macrocyclic phosphate-metal-adenine chelate is formed [4], and based on his experimental results, the author considers the existence of such a macrocyclic chelate in the copper complexes of ITP, GTP, CTP, UTP, and TTP as established. The coordination sites of the heteroaromatic groups in these complexes are discussed.  相似文献   

20.
The proton‐induced electron‐transfer reaction of a CuII μ‐thiolate complex to a CuI‐containing species has been investigated, both experimentally and computationally. The CuII μ‐thiolate complex [CuII2( LMeS )2]2+ is isolated with the new pyridyl‐containing ligand LMeSSLMe , which can form both CuII thiolate and CuI disulfide complexes, depending on the solvent. Both the CuII and the CuI complexes show reactivity upon addition of protons. The multivalent tetranuclear complex [CuI2CuII2( LS )2(CH3CN)6]4+ crystallizes after addition of two equivalents of strong acid to a solution containing the μ‐thiolate complex [CuII2( LS )2]2+ and is further analyzed in solution. This study shows that, upon addition of protons to the CuII thiolate compound, the ligand dissociates from the copper centers, in contrast to an earlier report describing redox isomerization to a CuI disulfide species that is protonated at the pyridyl moieties. Computational studies of the protonated CuII μ‐thiolate and CuI disulfide species with LSSL show that already upon addition of two equivalents of protons, ligand dissociation forming [CuI(CH3CN)4]+ and protonated ligand is energetically favored over conversion to a protonated CuI disulfide complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号