首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Tautomers of N-allyl- and N-propargyl-substituted trifluoromethanesulfonimides (CF3SO2)2NR (R = CH2CH=CH2, Z/E-CH=CHMe, CH2C≡CH, CH=CH=CH2, C≡CCH2) were calculated by the DFT (B3LYP, wB97XD, PBE1PBE), MP2, and CBS-QB3 methods. The results were compared with the theoretical data for the corresponding amines and amides NHRR1 (R1 = H, CF3SO2). It was shown that there is no conjugation between the nitrogen atom and C=C bond and that conjugation exists with the C≡C bond with electron density displacement toward the nitrogen atom. The calculations of anions derived from N-allyl- and N-propargyl-trifluoromethanesulfonimides revealed the possibility of their rearrangement with elimination of trifluoromethanesulfinate anion and formation of its H-complex with N-(prop-2-en-1-ylidene)trifluoromethanesulfonamide or N-(prop-2-yn-1-ylidene)trifluoromethanesulfonamide.  相似文献   

2.
New 1,3,6,2-dioxazaborocanes R1N(CHR3CR4R2O)(CHR6CHR5O)BX (1–11, X = Ph, 4-MeC6H4, Me; R1 = Me, PhCH2; R2, R3, R4, R5, R6 = H, Ph) were synthesized by the reactions of aryl- or methylboronic acids with dialkanolamines. The treatment of (Me2NCH2CH2O)3B (15) with MeN(CH2CH2OH)(CH2CPh2OH) afforded 2-[2-(dime-thylamino)ethoxy]-1,3,6,2-dioxazaborocane (12). 2-Fluoro-1,3,6,2-dioxazaborocanes R1N(CHR3CHR2O)(CH2CH2O)BF (13: R1 = PhCH2, R2 = R3 = H; 14: R1 = Me, R2 = R3 = Ph, threo) were synthesized by the reaction of bis(trimethylsilyl) ethers of the corresponding dialkanolamines with BF3·Et2O. The new borocanes can be used for the synthesis of the corre-sponding germanium derivatives PhCH2N(CH2CH2O)2GeX2 (16, X = OEt; 17, X = Cl), as exemplified by the reaction of compound 6. The structures of erythro-MeN(CH2CH2O)(CHPhCHPhO)BPh (3), threo-MeN(CH2CH2O)(CHPhCHPhO)BPh (4), erythro-MeN(CH2CH2O)(CHPhCHPhO)B(4-MeC6H4) (8), and PhCH2N(CH2CH2O)2BF (13) were established by X-ray diffraction. The coordination polyhedra of the boron atoms in these complexes can be described as distorted tetrahedra. The boron-nitrogen distances (1.705(7)–1.723(3) Å) provide unambiguous evidence for the presence of the B←N transannular interaction in these compounds. The structures of the resulting borocanes containing phenyl substituents at the carbon atoms of the ocane skeleton were studied by NMR spectroscopy and quantum chemical density functional theory calculations.  相似文献   

3.
Reactions of element-substituted alkynes R3MCCPh (R3M = Me3Si, Et3Si, Ph3Si, Et3Ge, n-Bu3Sn, N(CH2CH2O)3Si, N(CH2CH2O)3Ge, N(CH2-CHMeO)3Ge, and N(CH2CH2O)2(CH2CHPhO)Ge) with bromine, tetra-n-butylammonium tribromide (TBAT), and N-bromosuccinimide (NBS)/DMSO were investigated. The Z,E-ratio of isomeric dibromoalkenes formed in bromination reaction with Br2 and TBAT are discussed. The crystal structures of N(CH2CH2O)3SiCCPh and N(CH2CHMeO)3GeX (X = C CPh, C(Br)C(Br)Ph, C(Br2)C(O)Ph), and Ph3SiC(Br)C(Br)Ph are reported. © 2003 Wiley Periodicals, Inc. 15:43–56, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/.hc10211  相似文献   

4.
Crystals of anionic π-complex Cs[CuCl2(HOCH2C≡CCH2OH)] ? H2O were synthesized by reaction of 2-butyne-1,4-diol with CuCl in a saturated aqueous solution of CsCl at 90°C and studied by X-ray diffraction analysis. The crystals are triclinic (space group \(P\bar 1\) ; a = 10.155(4) Å, b = 7.828(4) Å, c = 7.115(3) Å, α = 102.62(4)°, β = 100.77(3)°, γ = 106.71(4)°, V = 509(1) Å3, Z = 2) and consist of stacks of individual anions [CuCl2(HOCH2C≡CCH2OH)]? and hydrated [Cs ? H2O]+ cations between the stacks. The Cu(I) atom has trigonal surrounding of two Cl atoms and the C≡C bond of 2-butyne-1,4-diol molecule. The Cu-(C≡C) distance in the π-core is 1.905(8) Å; the C≡C bond is elongated to 1.223(11) Å. In addition to hydrogen bonds O-H?Cl, crystals of the complex also contain O(w)?H-O and O(w)?Cl bonds stabilizing their structure.  相似文献   

5.
Reactions of (triethylstannylthioalkyl)trimethoxysilanes Et3SnS(CH2)nSi(OMe)3 (n = 1, 2) and (triethylstannylthioalkyl)trialkoxysilatranes Et3Sn(CH2) n Sa [hereinafter Sa = Si(OCH2CH2)3N is silatranyl group] with methyl iodide are studied for the first time. The results of the investigation of the reaction of 1-(2-alkylthioethyl)silatranes RSCH2CH2Sa (R = Me, Et) with methyl iodide are also discussed.  相似文献   

6.
N,N′-Bis(methoxycarbonyl)-p-benzoquinone diimine reacted with 4-(cyclohex-1-en-1-yl)-and 4-(cyclopent-1-en-1-yl)morpholines in methylene chloride at room temperature to give morpholino-substituted cyclohexane-and cyclopentane-fused indole derivatives. Heating of the latter in boiling 10% hydrochloric acid led to the formation of methyl 6-(methoxycarbonylamino)-1,2,3,4,4a,9a-hexahydro-9H-carbazole-9-carboxylate and methyl 7-(methoxycarbonylamino)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indole-4-carboxylate, respectively. The reaction of N,N′-bis(methoxycarbonyl)-p-benzoquinone diimine with 4-benzylaminopent-3-en-2-one in CH2Cl2 in the presence of BF3·Et2O on heating gave methyl 3-acetyl-2-methyl-(5-methoxy-carbonylamino)-1H-indole-1-carboxylate.  相似文献   

7.
Mono- and bifunctional mesoporous silicas containing the thiourea group ≡Si(CH2)3NHC(S)NHC2H5 or thiourea and various nitrogen-containing groups [≡Si(CH2)3NH2, ≡Si(CH2)3NH(CH2)2NH2, or {≡Si(CH2)3}2NH], respectively, in the surface layer were prepared by template syntheses with cetylpyridinium chloride as a template. The synthesized samples had well-developed porous structures (S sp = 750–1150 m2/g, V c = 0.51–0.72 cm3/g, and d = 2.4–3.5 nm) and high functional group contents (1.0–2.0 mmol/g). Hydrothermal treatment of the mesophases in a mother liquor at 80°C (24 h) improved the structure-adsorption characteristics of the functionalized mesoporous silicas.  相似文献   

8.
Reactions of acyl iodides R1COI (R1=Me, Ph) with trialkyl(alkynyl)silanes,-germanes, and stannanes (R2C≡CMR 3 3 ; M=Si, Ge, Sn) were studied. Acyl iodides reacted with the germanium and tin derivatives with cleavage of the M-Csp bond and formation of the corresponding trialkyl(iodo)germanes and-stannanes R 3 3 MI (M=Ge, Sn) and alkynyl ketones R1C(O)C≡CR2 and R1C(O)C≡CC(O)R1. By contrast, the reaction of acetyl iodide with ethynyl(trimethyl)silane gave only a small amount of 1,2-diiodovinyl(trimethyl) silance as a result of iodine addition at the triple bond. Bis(trimethylsilyl)ethyne failed to react with acetyl iodide.  相似文献   

9.
α-Silylmethylamines MeNHCH2SiMen(OMe)3?n (n=0, 2) were involved into Todd-Atherton reaction with (MeO)2P(O)H giving N-methyl-N-trimethoxysilylmethyl-and N-methyl-N-dimethyl-(methoxy)silylmethylamides of dimethylphosphoric acid. A reaction of these compounds with BF3·Et2O led to the formation of the corresponding N-methyl-N-trifluoro-and N-methyl-N-(dimethyl)fluorosilylmethylamides of dimethylphosphoric acid. (MeO)2P(O)N(Me)CH2SiF3 existed as an (O-Si)-chelate with a pentacoordinate silicon due to the occurrence of a rare and unstudied intramolecular coordinating interaction P=O → Si.  相似文献   

10.
Diphenylguanidinium bis(citrato)germanate hydrate (HDphg)2[Ge(HCit)2] · 1.08H2O (I) was prepared for the first time (H4Cit is citric acid, Dphg is diphenylguanidine). The composition of I was determined using elemental analysis and thermogravimetry; the coordination sites of H4Cit and the protonation sites of Dphg were identified by IR spectroscopy. Compound I was studied by X-ray diffraction. The crystals are monoclinic, a = 11.179(2) Å, b = 7.6081(15) Å, c = 23.529(5) Å, β = 95.38(3)°, V = 1992.3(7) Å3, Z = 2, space group P21/c, R = 0.0339 for 2498 reflections with I>2σ(I). In the [Ge(HCit)2]2? complex anion, the Ge atom is bond to a distorted octahedral array of six O atoms of the two tridentate chelating HCit3? ligands (Ge-O, 1.8045–1.9555 Å). In the crystal of I, the anions and cations are combined into layers by a system of hydrogen bonds.  相似文献   

11.
The reactions of N-alkyliminodiacetamide derivatives, namely N-ethyliminodiacetamide (CH3CH2N(CH2CONH2)2; Etimda) and N-isopropyliminodiacetamide (CH3)2CHN(CH2CONH2)2; i-Primda), with sodium tetrachloropalladate(II) in aqueous solutions were investigated. Three new palladium(II) complexes, [Pd(Etimda?H)2]?2H2O (1), [Pd(i-Primda?H)2]?2H2O (2) and [PdCl2(i-Primda)] (3), were obtained and characterized by X-ray structural analysis, infrared spectroscopy and thermal analysis (TGA). The square planar coordination environments around the palladium(II) ions in complexes 1 and 2 consist of two N,N′-bidentate N-alkyliminodiacetamidato ligands, with imino N atoms in trans-position. The complex 3 also exhibits a square planar coordination environment around Pd(II), but with two chloride ions and one neutral N-isopropyliminodiacetamide ligand bound in an N,O′-bidentate coordination mode. The described coordination modes, as well as the presence of deprotonated amide groups in ligands in 1 and 2, are found for the first time in palladium(II) complexes with iminodiacetamide type ligands. The molecular geometries and infrared spectra of these three complexes were also modelled using DFT calculations, at the BP86-D3/def2-TZVPP/PCM level of theory. The RMSD values suggest a good agreement of the calculated and experimental geometries. A QTAIM analysis suggests a qualitative correlation between bond lengths and energy densities, also supported by an NBO analysis. The dimer interaction energy between complex units was estimated at about ?15 kcal/mol for all complexes.  相似文献   

12.
Fragmentation of 13 compounds of the 4H-pyran-4-one and pyridin-4-one series under electron impact involves formation of rearrangement ions stabilized by multiple bonds and oxygen atoms (mostly [RC≡O]+ and RCH=OR′]+), as well of neutral molecules with low enthalpies of formation (CO, H2O, CH2O, CO2, CH2=C=O, C3O2, and RCOOH; R = H, Me, HC≡C, HOC≡C).  相似文献   

13.
The reaction of (p-cymene)Ru2(μ-S2)(S2C2B10H10)2 (I) with HC≡CCH(OH)(CH3)2 in dichloromethane led to addition complexes, (p-cymene)Ru2(μ-S2)(S2C2B10H10)2(R1C=CR2) (R1 = H, R2 = C(OH)(CH3)2 (II); R1 = C(OH)(CH3)2, R2 = H (III)). In boiling chloroform both complexes II and III spontaneously lose water to generate two geometrical isomers (p-cymene)Ru2(μ-S2)(S2C2B10H10)2(R1C=CR2) (R1 = H, R2 = C(CH3)=CH2 (IV); R1 = C(CH3)=CH2, R2 = H (V)), respectively. Complexes IV and V could be interconverted in boiling toluene. All these complexes were characterized by elemental analysis, mass spectrometry, and NMR spectroscopy. The molecular structure of complex IV has been determined by X-ray crystallography (CIF file CCDC no. 1443964). Complex IV crystallizes in monoclinic system, space group P21/c with a = 10.3717(9), b = 20.3982(17), c = 18.6428(13) Å, β = 111.096(4)°, C19H40B20Ru2S6, M r = 879.27, V = 3679.8(5) Å3, ρ c = 1.587 g/cm3, Z = 4, F(000) = 1752, μ(MoK α) = 1.179 mm–1, R = 0.0416 and wR = 0.0848 for 4602 observed reflections (I > 2σ(I)).  相似文献   

14.
Reactions of acetamide with platinum(II) diamines [Pt(N,N-DimeEn)Cl2], [Pt(Tm)Cl2], and [Pt(N,N-DimeTm)Cl2] (N,N-DimeEn = (CH3)2N(CH2)2NH2, Tm = NH2(CH2)3NH2, N,N-DimeTm = (CH3)2N(CH2)3NH2) with preliminary precipitation of chlorine ions by silver salts gave binuclear Pt(II) acetamidates [Pt2(CH3)2N(CH2)2NH2)2(μ-NHCOCH3)2](NO3)2 · H2O (I), [Pt2(NH2(CH2)3NH2)2)(μ-NHCOCH3)2](NO3)2 · H2O (II), and [Pt2(CH3)2N(CH2)3NH2)2(μ-NHCOCH3)2](HSO4)2 (III), whose crystal structures were determined. Crystals of I are monoclinic: a = 14.459(2) Å, b = 17.197(3) Å, c = 9.822(2) Å, β = 105.923(10)°, V = 3348.6(8) Å3, space group P2(1)/c, Z = 4, R hkl = 0.0419 for 6663 reflections. Complex I is a binuclear acetamidate with bridging (NHCOCH3)? ligands, one of which is bound to two Pt atoms through the N and O atoms, and the other ligand is bound only through the N atom. The Pt-Pt distance is 2.987(1) Å. Crystals of II are monoclinic: a = 10.213(7) Å, b = 13.373(9) Å, c = 16.533(11) Å, β = 97.971(9)°, V = 2236(3) Å3, space group P2(1)/n, Z = 4, R hkl = 0.557 for 6462 reflections. The Pt-Pt distance is 3.057(1) Å. Crystals of III are monoclinic: a = 10.557(12) Å, b = 18.531(2) Å, c = 14.4744(17) Å, β = 108.705(2)°, V = 2682(5) Å3, space group P2(1)/n, Z = 4, R hkl = 0.569 for 8506 reflections. The Pt-Pt distance is 3.202(1) Å. Complexes II and III are binuclear acetamidates, in which two chelating Pt(Tm) or Pt(N,N-DimeTm) moieties are coordinated through the N and O atoms of (NHCOCH3)? cis-bridges.  相似文献   

15.
A new neptunium(V) complex [(NpO2)2(CH3COO)2(H2O)] ? 2H2O was synthesized and its crystal structure was determined. The unit cell parameters are: a = 24.007(10) Å, b = 6.779(3) Å, c = 8.076(3) Å, space group Pnma, Z = 4, V = 1314.2(9) Å3, R = 0.049, wR(F2) = 0.105. The crystal structure of the compound is composed of neutral [(NpO2)2(CH3COO)2(H2O)] layers and molecules of the water of crystallization. Each of the crystallographically independent neptunoyl ions performs a bidentate function thus forming a composite system of cation-cation bonds.  相似文献   

16.
The previously unknown germanium(IV) complex with N-(2-hydroxyethyl)ethylenediamine-N,N′,N′-triacetic acid (H4Hedtra) was synthesized. The complex was characterized by elemental analysis, X-ray powder diffraction, thermogravimetry, and IR spectroscopy. The structure of the [[Ge(OH)(HHedtra)] · 1.5H2O (complex I) was established by X-ray diffraction. The crystals are triclinic, a = 6.7380(13) Å, b = 14.643(2) Å, c = 15.4360(10) Å, α= 104.452(6)°, β = 100.293(6)°, γ = 96.643(5)°, V = 1430.4(4) Å3, Z = 2, space group \(P\bar 1\), R = 0.0356 based on 6108 reflections with I > 2σ(I). In each crystallographically independent [Ge(OH)(HHedtra)] complex molecule, the Ge atom is coordinated by two nitrogen atoms and three oxygen atoms of three acetate branches of the pentadentate chelating ligand HHedtra3? (avg. Ge-N, 2.082(2) Å; Ge-O, 1.890(2) Å). The octahedral coordination of the metal atom involves also the O atom of the hydroxo ligand (avg. Ge-OH, 1.766(2) Å). In the crystal structure, the complex molecules and crystal-water molecules are linked to each other by a hydrogen-bond network.  相似文献   

17.
In continuation of a systematic study of bis(citrate)germanates, we synthesized a number of heterometallic germanium(IV) and 3d metal complexes based in citric acid (H4Cit) with the molecular formula [M(H2O)6][Ge(HCit)2] · nH2O, where M = Fe, n = 4 (I); Co, n = 2 (II); Ni, n = 2 (III); Cu, n = 1 (IV); Zn, n = 3 (V). The complexes were characterized by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction analysis of compound I was performed. Crystals are monoclinic, a = 10.091(4) Å, b = 11.126(4) Å, c = 10.996(4) Å, β = 100.966(6)°, V = 1212.1(8) Å3, Z = 4, space group P21/n, R1 = 0.0561 for 2266 reflections with I > 2σ(I). Compound I is composed of centrosymmetric octahedral complexes-[Ge(HCit)2]2? anions and [Fe(H2O)6]2+ cations—and crystallization water molecules. Structural units in compound I are combined by a hydrogen bond system.  相似文献   

18.
The onium compound based on the germanium(IV) complex with ethylenediamine-N,N,N 1,N 1-tetraacetic acid (H4Edta) and diphenylguanidine (Dphg), (HDphg)[Ge(OH)(Edta)] · H2O, has been isolated in the solid state and studied by physicochemical methods. Its crystal structure has been determined by the X-ray diffraction method. The crystals are monoclinic, a = 7.0179(9) Å, b = 28.797(8) Å, c = 13.477(2) Å, β = 104.301(12)°, V = 2639.3(9) Å3, Z = 4, space group P21/c, R = 0.045 for 2524 reflections with I > 2σ(I). The onium compound is built of diphenylguanidinium cations HDphg+, [Ge(OH)(Edta)]? anions, and water molecules of crystallization. In the complex anion, the Ge atom is coordinated by two nitrogen atoms and three oxygen atoms of three acetate arms of the pentadentate chelating ligand Edta4? (av. Ge-N, 2.095(4) Å; Ge-O, 1.891(3) Å). The fourth acetate arm is deprotonated and is not involved in coordination with the metal. The coordination of the metal atom is completed to an octahedral one by the O atom of the hydroxo ligand (Ge-OH 1.759(3) Å). The structural units in crystal are linked by a system of hydrogen bonds.  相似文献   

19.
The heteronuclear germanium(IV) and neodymium(III) complex with 1,3-diamino-2-propanoltetraacetic acid (H5Hpdta) [Ge(OH)(μ-HHpdta)(μ-OH)Nd(OH)(H2O)3] · H2O has been synthesized for the first time and characterized by physicochemical methods (elemental analysis, X-ray powder diffraction, thermogravimetry, IR spectroscopy, X-ray crystallography). The crystals are monoclinic: a = 9.331(3) Å, b= 10.279(4) Å, c = 21.474(7) Å, β = 94.59(3)°, V = 2053.0(12) Å3, Z = 4, space group P21/n, R1 = 0.0245 for 4060 reflections with I > 2σ(I). The compound is built of complex binuclear molecules [Ge(OH)(μ-HHpdta)(μ-OH)Nd(OH)(H2O)3] and water molecules of crystallization. The germanium and neodymium atoms are bridged by the oxygen atom of the hydroxo group (Ge-O, 1.798(2) Å; Nd-O, 2.539(2) Å) and the deprotonated oxygen atom of the isopropanol group of the HHpdta4? ligand (Fe-O, 1.858(2)Å; Nd-O, 2.420(2) Å) to form a dimeric molecule. Each coordination sphere (of the Ge atom and of the Nd atom) contains one nitrogen atom (Ge-N, 2.096(3) Å; Nd-N, 2.807(2) Å) and two carboxylic oxygen atoms from four acetate branches of the octadentate HHpdta4? ligand (av. Ge-O, 1.928(2) Å; Nd-O, 2.391(2) Å). The coordination polyhedron of the Ge atom is completed to a distorted octahedron by the oxygen atom of the terminal hydroxo group (Ge-O 1.811(2) Å), and the polyhedron of the Nd atom is completed to a nine-vertex polyhedron by the oxygen atoms of the terminal hydroxo group (Nd-O 2.494(3) Å) and three water molecules (Nd-O, 2.512(3), 2.520(3), and 2.723(3) Å). In the crystal structure, the complex molecules and the water molecules of crystallization are joined by a hydrogen bond system.  相似文献   

20.
The potential energy surfaces of the (CH3)nH3?n M+ ions, where n = 1, 2; M = Si, Ge, were scanned using the B3LYP method with 6–31G* and aug-cc-pVDZ basis sets. The major attention was given to isomeric species having the form of complexes of the HM+ and CH3M+ ions with hydrogen, methane, and ethane molecules. These species were characterized previously neither by experimental nor by theoretical methods. It was found that these species become more stable in going from Si to Ge; the complex [CH3Ge+CH4] is the second isomer in the energy after (CH3)2HGe+. However, the heights of the activation barriers to formation of these complexes from the most stable isomer, though decreasing in going from Si to Ge, remain relatively high and, what is particularly important, somewhat exceed the activation barrier to formation of the complex [H3Ge+·C2H4].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号