首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Three kinds of soybean lecithin liposomes composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidic acid (PA), were prepared by using the previously developed supercritical reverse phase evaporation method (Langmuir 17 (2001) 3898). The effect of phospholipid composition on the formation of liposomes and their physicochemical properties were examined by means of trapping efficiency measurements, transmission electron microscopy, dynamic light scattering and zeta potential measurements. The trapping efficiency of liposomes for d-(+)-Glucose made of Lecinol S-10EX which contains approximately 95% PC is higher than that of Lecinol S-10 and SLP white SP which contain approximately 31% PC. However there is not any difference between the trapping efficiency of liposomes for d-(+)-Glucose made of Lecinol S-10 which has saturated hydrocarbons tails and that of liposomes made of SLP white SP which has unsaturated hydrocarbon chains. The electron micrographs of liposomes made of Lecinol S-10 and SLP white SP show small spherical liposomes with diameter of 0.1–0.25 μm, while that of Lecinol S-10EX shows large unilamellar liposomes (LUV) with diameter of 0.2–1.2 μm. These results clearly show that phospholipid structure of PC allows an efficient preparation of LUV and a high trapping efficiency for water-soluble substances. Liposomes made of Lecinol S-10 and SLP white SP remained well-dispersed for at least 14 days, while liposome suspension made of Lecinol S-10EX separated in two phase at 14 days due to aggregation and fusion of liposomes. The dispersibility of liposomes made of Lecinol S-10EX is lower than that of Lecinol S-10 and SLP white SP due to the smaller zeta potential of Lecinol S-10EX.  相似文献   

2.
The conformation of peptide and protein drugs in various microenvironments and the interaction with drug carriers such as liposomes are of considerable interest. In this study the influence of microenvironments such as pH, salt concentration, and surface charge on the secondary structure of a model protein, lysozyme, either in solution or entrapped in liposomes with various molar ratios of phosphatidylcholine (PC):cholesterol (Chol) was investigated. It was found that entrapment efficiency was more pronounced in negatively charged liposomes than in non-charged liposomes, which was independent of Chol content and pH of hydration medium. The occurrence of aggregation, decrease in zeta potential, and alteration of 31P NMR chemical shift of negatively charged lysozyme liposomes compared to blank liposomes suggested that the electrostatic interaction plays a major role in protein–lipid binding. Addition of sodium chloride could impair the neutralizing ability of positively charged lysozyme on negatively charged membrane via chloride counterion binding. Neither lysozyme in various buffer solutions with sodium chloride nor that entrapped in liposomes showed any significant change in their secondary structures. However, significant decrease in α-helical content of lysozyme in non-charged liposomes at higher pH and salt concentrations was discovered.  相似文献   

3.
Abstract— 124-kDa Phytochrome from oat has been covalently bound to the surface of preformed unilamellar liposomes doped with functionalized lipids. The extent of phytochrome binding varied from 100% (to soybean lecithin and dioleoyl phosphatidylcholine liposomes) to (90 ± 10)% (to dimyristoyl phosphatidylcholine liposomes) and (50 ± 10)% to dipalmitoyl phosphatidylcholine liposomes). The photochromic properties of phytochrome were fully retained in the liposome-bound systems. Attempts to bring about spontaneous incorporation and binding of the phytochrome to neutral and positively charged liposomes failed. These results were independent of liposome size, the presence of cholesterol, and whether phytochrome was added prior to or after the liposome formation.  相似文献   

4.
Liposome electrokinetic chromatography (LEKC) provides convenient and rapid methods for studying drug interactions with lipid bilayers using liposomes as a pseudostationary phase. LEKC was used to determine the effects of pH on the partitioning of basic drugs into liposomes composed of zwitterionic phosphatidylcholine (PC), anionic phosphatidylglycerol (PG), and cholesterol, which mimic the composition of natural cell membranes. An increase in pH results in a smaller degree of ionization of the basic drugs and consequently leads to a lower degree of interaction with the negatively charged membranes. From the LEKC retention data, the fractions of drugs distributed in the bulk aqueous and the liposome phase were determined at various pH values. Finally, lipid mediated shifts in the ionization constants of drugs were examined.  相似文献   

5.
Functionalized electrospun nanofibers were integrated into microfluidic channels to serve as on-chip bioseparators. Specifically, poly(vinyl alcohol) (PVA) nanofiber mats were shown to successfully serve as bioseparators for negatively charged nanoparticles. Nanofibers were electrospun onto gold microelectrodes, which were incorporated into poly(methyl methacrylate) (PMMA) microfluidic devices using UV-assisted thermal bonding. PVA nanofibers functionalized with poly(hexadimethrine bromide) (polybrene) were positively charged and successfully filtered negatively charged liposomes out of a buffer solution, while negatively charged nanofibers functionalized with Poly(methyl vinyl ether-alt-maleic anhydride) (POLY(MVE/MA)) were shown to repel the liposomes. The effect of fiber mat thickness was studied using confocal fluorescence microscopy, determining a quite broad optimal range of thicknesses for specific liposome retention, which simplifies fiber mat production with respect to retention reliability. Finally, it was demonstrated that liposomes bound to positively charged nanofibers could be selectively released using a 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES)-sucrose-saline (HSS) solution of pH 9, which dramatically changes the nanofiber zeta potential and renders the positively charged nanofibers negatively charged. This is the first demonstration of functional electrospun nanofibers used to enable sample preparation procedures of isolation and concentration in lab-on-a-chip devices. This has far reaching impact on the ability to integrate functional surfaces and materials into microfluidic devices and to significantly expand their ability toward simple lab-on-a-chip devices.  相似文献   

6.
The stability of zwitterionic phosphatidylcholine vesicles in the presence of 20 mol% phosphatidyl serine (PS), phosphatidic acid (PA), phosphatidyl inositol (PI), and diacylphosphatidyl glycerol (PG) phospholipid vesicles, and cholesterol or calcium chloride was investigated by asymmetrical flow field-flow fractionation (AsFlFFF). Large unilamellar vesicles (LUV, diameter 100 nm) prepared by extrusion at 25 °C were used. Phospholipid vesicles (liposomes) were stored at +4 and −18 °C over an extended period of time. Extruded egg yolk phosphatidylcholine (EPC) particle diameters at peak maximum and mean measured by AsFlFFF were 101 ± 3 nm and 122 ± 5 nm, respectively. No significant change in diameter was observed after storage at +4 °C for about 5 months. When the storage period was extended to about 8 months (250 days) larger destabilized aggregates were formed (172 and 215 nm at peak maximum and mean diameters, respectively). When EPC was stored at −18 °C, large particles with diameters of 700–800 nm were formed as a result of dehydration, aggregation, and fusion processes. In the presence of calcium chloride, EPC alone did not form large aggregates. Addition of 20 mol% of negatively charged phospholipids (PS, PA, PI, or PG) to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) vesicles increased the electrostatic interactions between calcium ion and the vesicles and large aggregates were formed. In the presence of cholesterol, large aggregates of about 250–350 nm appeared during storage at +4 and −18 °C for more than 1 day.

The effect of liposome storage temperature on phospholipid coatings applied in capillary electrophoresis (CE) was studied by measuring the electroosmotic flow (EOF). EPC coatings with and without cholesterol, PS, or calcium chloride, prepared from liposomes stored at +25, +4, and −18 °C, were studied at 25 °C. The performances of the coatings were further evaluated with three uncharged compounds. Only minor differences were observed between the same phospholipid coatings, showing that phospholipid coatings in CE are relatively insensitive to storage at +25, +4 °C or −18 °C.  相似文献   


7.
The aim of this study was to prepare and characterize neutral, positively charged, negatively charged and fusogenic liposomes of different sizes that contain cyclosporine A (CyA) and to evaluate their immunosuppressive activity on human T-cells. Neutral liposomes containing CyA were prepared from dipalmitoylphosphatidylcholine (DPPC) and cholesterol using the solvent evaporation method. To prepare positively charged, negatively charged and fusogenic liposomes containing CyA; stearylamine (SA), dicetylphosphate (DCP) and dioleoylphosphatidylethanolamine (DOPE) were added to the neutral liposome formulation, respectively. To reduce the size of liposomes containing CyA, extrusion through polycarbonate filters (1000, 400 and 100 nm) was used. The liposomes were characterized by their size, zeta potential and encapsulation efficiency. The in vitro immunosuppressive effects of an aqueous solution of CyA and different liposomes containing CyA were determined on human T-cells by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. The mean diameter of the various multilamellar vesicle (MLV) liposomes containing CyA was between 1.76 and 2.49 μm. The encapsulation efficiency for the different MLV and extruded liposomes containing CyA ranged from 73% to 90%. In vitro immunosuppressive evaluation by T-cell culture showed that fusogenic liposomes have the best inhibitory effects on T-cell proliferation compared to the other liposomes. Reducing the size of the liposomes did not affect the in vitro immunosuppressive activity. The average IC50 for the aqueous solution of CyA and the neutral, positively charged, negatively charged and fusogenic liposomes containing CyA was 4.98 × 10−2, 7.38, 1.43, 3.84 × 10−3 and 7.93 × 10−5 mM, respectively. The results of this study indicate that fusogenic liposomes have the strongest immunosuppressive activity and could be considered as a suitable delivery system for CyA.  相似文献   

8.
A composite multilamellar liposome containing chitosan attached to the inside and outside of the membrane as well as an opposite charged polyelectrolyte, chondroitin, adsorbed at the surface was developed. Not only the chitosan/chondroitin ratio but also the concentration of them were varied. The structure and superficial properties of the liposomes were studied through a combination of light scattering, zeta potential, and small-angle X-rays scattering techniques. While the chitosan/chondroitin ratio affected the superficial charge distributions, the concentration of polyelectrolytes affected the structural properties of the liposomes, as the rigidity of the phospholipid layers. The superficial charge of the resultant composite liposome was influenced by the type and concentration of the polyelectrolyte. Information about the charge density could be obtained by the treatment of zeta potential data, and it was used to estimate the amount of chondroitin adsorbed to the liposome surface. Applying the modified Caillé theory to the X-rays scattering curves, information about the internal structure of the liposomes was accessed. The ability to control the properties of composite multilamellar liposomes is an important issue when they have to be applied as a biomaterial device component.  相似文献   

9.
Solution properties of a drug and its partitioning into lipid bilayers were studied for drug extraction using several different techniques, such as surface tension, zeta potential, ultra filtration and UV-Vis spectroscopy. From the surface tension study it was found that the presence of salt makes the drug molecules more surface-active. Zeta potential revealed the adsorption of the drug into the liposome bilayers to be governed mostly by electrostatic forces. The drug retention volume was expressed as a capacity factor, K, and that was normalized with respect to the amount of the immobilized phospholipids. The K-values for the positively charged drug on the liposomes decreased in the presence of phosphate buffer due to the presence of the oppositely charged ions. The above methods can thus be used to understand the mechanism of drug-membrane interaction and quantification of drug absorption into liposomes.  相似文献   

10.
Detergent removal from mixed micelles was combined with preparative size exclusion chromatography (SEC) on Sephacryl S 500 HR to prepare unilamellar and spherical liposomes of defined sizes between 50 and 100 nm with a very narrow size distribution (RSD of vesicle diameter between 13% and 25%). For neutral phosphatidylcholine and negatively charged phosphatidylcholine/phosphatidylglycerol liposome preparations, efficient sizing at the preparative scale was demonstrated by analyzing isolated SEC peak fractions with cryo-transmission electron microscopy and dynamic light scattering. The number-weighted average vesicle diameters obtained using both methods are in very good agreement for fractions of low polydispersity.  相似文献   

11.
The effect of adsorption of bovine serum albumin (BSA) on the membrane characteristics of liposomes at pH 7.4 was examined in terms of zeta potential, micropolarity, microfluidity and permeability of liposomal bilayer membranes, where negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG)/L-alpha-dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP)/DPPC and positively charged stearylamine (SA)/DPPC mixed liposomes were used. BSA with negative charges adsorbed on negatively charged DPPG/DPPC mixed liposomes but did not adsorb on negatively charged DCP/DPPC and positively charged SA/DPPC mixed liposomes. Furthermore, the adsorption amount of BSA on the mixed DPPG/DPPC liposomes increased with increasing the mole fraction of DPPG in spite of a possible electrostatic repulsion between BSA and DPPG. Thus, the adsorption of BSA on liposomes was likely to be related to the hydrophobic interaction between BSA and liposomes. The microfluidity of liposomal bilayer membranes near the bilayer center decreased by the adsorption of BSA, while the permeability of liposomal bilayer membranes increased by the adsorption of BSA on liposomes. These results are considered to be due to that the adsorption of BSA brings about a phase separation in liposomes and that a temporary gap is consequently formed in the liposomal bilayer membranes, thereby the permeability of liposomal bilayer membranes increases by the adsorption of BSA.  相似文献   

12.
The formation of complexes of anionic liposomes (50 nm) and polymer microspheres with grafted polycationic chains with a diameter of 240 nm (spherical polycationic brushes) in a physiological solution at a NaCl concentration of 0.15 mol/L is investigated. Liposomes are quantitatively adsorbed on the surface of brushes; every brush can bind up to 24 intact liposomes. The saturated brush–liposome complex is able to additionally bind negatively charged protein albumin; the excess of protein does not displace liposomes from the complex with brushes. The obtained results are important for understanding the mechanism of formation and functioning of electrostatic multiliposomal containers in biological media containing a high amount of protein.  相似文献   

13.
Conventional lipid bilayer liposomes have similar inner and outer leaflet compositions; asymmetric liposomes have different lipid leaflet compositions. The goal of this work is to place cationic lipids in the inner leaflet to encapsulate negatively charged polynucleotides and to place neutral/anionic lipids on the outer leaflet to decrease nonspecific cellular uptake/toxicity. Inverse emulsion particles have been developed with a single lipid leaflet of cationic and neutral lipids surrounding an aqueous core containing a negatively charged 21-mer DNA oligo. The particles are accelerated through an oil-water interface, entrapping a second neutral lipid to form oligo encapsulated unilamellar liposome nanoparticles. Inverse emulsion particles can be consistently produced to encapsulate an aqueous environment containing negatively charged oligo. The efficiency of encapsulated liposome formation is low and depends on the hydrocarbon used as the oil phase. Dodecane, mineral oil, and squalene were tested, and squalene, a branched hydrocarbon, yielded the highest efficiency.  相似文献   

14.
Molecular interactions between phospholipids and mangostin in a lipid bilayer have been investigated in terms of the maximum additive concentration (MAC) of mangostin in liposomes, the surface potential, particle size, microscopic-viscosity and microscopic-polarity of liposomes, and the permeability of glucose. The mangostin used is a natural product extract: 1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-butenyl)-9-xanthenenone.

The MAC of mangostin was fairly dependent upon the nature of the liposomes (uncharged, negatively charged or positively charged). Solubilization of mangostin in the liposomal bilayer resulted in both an increase in the negative charge on the liposomal surface, strenghthening the state of the bilayer membrane, and a depression in the release of the glucose involved. Mangostin was found to temporarily stabilize the liposomal bilayer, although the bilayer membrane is still unstable in the long run.  相似文献   


15.
Ghrelin is a pharmacologically interesting peptide hormone due to its effects on appetite and metabolism. The cationic, octanoylated 28 amino acid peptide has a short biological half‐life; thus, prolonged release formulations are of interest. Acylated peptides have been suggested to bind to or be incorporated into liposomes. Formulations based on neutral dipalmitoylphosphatidylcholine (DPPC) liposomes and phosphatidylcholine:cholesterol (70:30 mol%) liposomes, and negatively charged dipalmitoylphosphatidylcholine:dipalmitoylphosphatidylserine (DPPC:DPPS) (70:30 mol%) liposomes (2 mM total lipid concentration) were characterized using ACE. Pre‐equilibrium CZE and frontal analysis CE methods circumventing capillary wall adsorption of the peptide and the liposomes and suitable for characterizing ghrelin–liposome interactions were developed. The cationic peptide exhibited low affinity (<10% bound) for DPPC and phosphatidylcholine:cholesterol (70:30 mol%) liposomes whereas electrostatic interactions caused a higher affinity for DPPC:DPPS (70:30 mol%) liposomes. Studies on desacyl ghrelin instead of ghrelin demonstrated the significance of the n‐octanoyl side chain as an affinity providing moiety towards DPPC:DPPS liposomes (48 and 73% bound peptide, respectively). CE experiments showed that the binding was characterized by rapid dissociation kinetics.  相似文献   

16.
Immobilized liposome chromatography (ILC) has been proven to be a useful method for the study or rapid screening of drug-membrane interactions. To obtain an adequate liposomal membrane phase for ILC, unilamellar liposomes were immobilized in gel beads by avidin-biotin binding. The retardation of 15 basic drugs on the liposome column could be converted to membrane partitioning coefficients, K(LM). The effects of small or large unilamellar liposomes and multilamellar liposomes on the drug-membrane partitioning were compared. The K(LM) values for both small and large liposomes were similar, but higher than those for the multilamellar liposomes. The basic drugs showed stronger partitioning into negatively charged liposomes than into either neutral liposomes or positively charged liposomes. The membrane fluidity of the immobilized liposomes was modulated by incorporating cholesterol into the liposomal membranes, by changing the acyl chain length and degree of unsaturation of the phospholipids, and by changing the temperature for ILC runs. Our data show that K(LM) obtained using ILC correlated well with those reported by batch studies using free liposomes. It is concluded that negatively charged or cholesterol-containing large unilamellar liposomes are suitable models for the ILC analysis of drug-membrane interactions.  相似文献   

17.
制备了树枝状聚合物聚酰胺-胺2代和3代(PAMAM G2, PAMAM G3)包覆的葛根素(Puerarin, PUE)脂质体, 考察了脂质体包覆前后的粒径、Zeta电位的变化及包覆率和体外释放特性. 用异硫氰酸荧光素(FITC)标记PAMAM, 采用透射电镜和激光扫描共聚焦显微镜分别观察了PAMAM包覆脂质体和FITC-PAMAM包覆脂质体的形态. 采用改进的Valia-Chien扩散池及兔离体角膜评价了脂质体包覆前后角膜的药物渗透特性, 分别考察了脂质体包覆前后的角膜前滞留时间、角膜残留药量和角膜水化值. 研究结果表明, 包覆后的脂质体粒径略有增加, 但没有显著差异, Zeta电位由负变正, 并且随PAMAM比例的增加而增加. 透射电镜和激光扫描共聚焦显微镜观察结果显示, PAMAM能较好地包覆于脂质体表面. PAMAM G2的包覆率明显比PAMAM G3高. 包覆前后的脂质体释药特性相似, 均具有明显的缓释作用. PAMAM包覆PUE脂质体后, 与PUE水溶液和未包覆PUE脂质体相比, 其PUE离体兔角膜表观渗透系数、角膜前滞留时间及角膜残留药量均明显增加, 并具有显著差异, 其中PAMAM G3包覆脂质体优于PAMAM G2包覆脂质体. 水化值检测结果表明, PAMAM包覆PUE脂质体对角膜的刺激性不明显.  相似文献   

18.
The radiowave dielectric properties of aqueous heterogeneous systems during the complexation of charged polyions and oppositely charged liposomal particles have been measured in a wide frequency range, between 100 Hz and 2 GHz. The formation of a polyion-liposome complex driven by the correlated polyion adsorption at the particle surface implies two concomitant effects referred to as reentrant condensation and charge inversion. Both of them are governed by electrostatic interactions and there is now strong evidence, based on experiments and simulations, that counterion release is the driving force of the aggregation process. From this point of view, dielectric technique may offer a suitable tool in the investigation of the structural properties of these aggregates. In spite of the fact that interaction of polyions with oppositely charged surfaces was extensively experimentally investigated, there are no papers concerning the dielectric properties during the polyion-induced aggregation. To get an insight into this important topic, the authors present here an extensive set of radiowave dielectric measurements of liposomal vesicle aqueous suspensions where the liposome aggregation was induced by an oppositely charged polyion. The aggregation was followed from the beginning, when most of the isolated liposomes predominate, up to the formation of polyion-coated liposomes of inverted charge, crossing the isoelectric condition, where large, almost neutral, aggregates appear. The authors describe the observed dielectric dispersions as due to counterion polarization in the adjacency of the liposome and liposome aggregate surface, primarily governed by the zeta potential, according to the standard electrokinetic model.  相似文献   

19.
Multilamellar liposomes consisting of phosphatidylcholine and incorporating prednisolone (PZ), diazepam (DZ), or griseofulvin (GF) were prepared and characterized. Liposome size, surface charge, and stability (in buffer and serum proteins) were measured for drug-incorporating liposomes and empty liposomes for comparison. The results reveal that for all drugs studied drug incorporation has a substantial effect on the vesicle zeta-potential and stability. Drug-incorporating liposomes have a negative surface charge, while their membrane integrity is significantly higher when compared with that of empty liposomes. Release of DZ from liposomes is induced by dilution. Summarizing, the results of this study demonstrate that the presence of PZ, DZ, or GF in liposome membranes has a significant effect on main vesicle properties and correlates well with those obtained previously for hydrochlorothiazide and chlorothiazide. Thereby, we may conclude that the previously demonstrated effects of the thiazides on liposome properties are not solely related to their structure.  相似文献   

20.
The potential of surface enhanced Raman spectroscopy (SERS) for the detection of water-soluble fullerene derivatives and their covalent conjugates with xanthene dyes was investigated in model biological liposome membranes and in the albumin protein structure. It was shown that in liposomes and in albumin, fullerene derivatives and their covalent conjugates with dyes show characteristic SERS spectra, which allows detection of water-soluble fullerene derivatives in phosphatidylcholine liposomes at the lipid/fullerene derivative ratio of 100 as well as fullerene–dye conjugates in liposomes and albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号