首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The literature about direct solid sample analysis of the past 10–15 years using electrothermal atomic absorption spectrometry has been reviewed. It was found that in the vast majority of publications aqueous standards were reported as having been used for calibration after careful program optimization. This means the frequently expressed claim that certified reference materials with a matrix composition and analyte content close to that of the sample have to be used for calibration in solid sample analysis is not confirmed in the more recent literature. There are obviously limitations, and there are examples in the literature where even calibration with certified reference materials did not lead to accurate results. In these cases the problem is typically associated with spectral interferences that cannot be corrected properly by the systems available for conventional line source atomic absorption spectrometry, including Zeeman-effect background correction. Using high-resolution continuum source atomic absorption spectrometry, spectral interferences become visible owing to the display of the spectral environment at both sides of the analytical line at high resolution, which makes program optimization straightforward. Any spectrally continuous background absorption is eliminated automatically, and even rapidly changing background absorption does not cause any artifacts, as measurement and correction of background absorption are truly simultaneous. Any kind of fine-structured background can be eliminated by “subtracting” reference spectra using a least-squares algorithm. Aqueous standards are used for calibration in all published applications of high-resolution continuum source atomic absorption spectrometry to direct solid sample analysis. This contribution is based on a presentation given at the Colloquium for Analytical Atomic Spectroscopy (CANAS ‘07) held March 18–21, 2007 in Constance, Germany.  相似文献   

2.
Jim G  Katskov D  Tittarelli P 《Talanta》2011,83(5):1687-1694
The vaporization of sulfur containing samples in graphite vaporizers for atomic absorption spectrometry is accompanied by modification of sulfur by carbon and, respectively, appearance at high temperature of structured molecular absorption in 200-210 nm wavelength range. It has been proposed to employ the spectrum for direct determination of sulfur in coal; soundness of the suggestion is evaluated by analysis of coal slurry using low resolution CCD spectrometer with continuum light source coupled to platform or filter furnace vaporizers. For coal in platform furnace losses of the analyte at low temperature and strong spectral background from the coal matrix hinder the determination. Both negative effects are significantly reduced in filter furnace, in which sample vapor efficiently interacts with carbon when transferred through the heated graphite filter. The method is verified by analysis of coals with sulfur content within 0.13-1.5% (m/m) range. The use of coal certified reference material for sulfur analyte addition to coal slurry permitted determination with random error 5-12%. Absolute and relative detection limits for sulfur in coal are 0.16 μg and 0.02 mass%, respectively.  相似文献   

3.
The literature about the investigation of molecular spectra of phosphorus, sulfur and the halogens in flames and furnaces, and the use of these spectra for the determination of these non-metals has been reviewed. Most of the investigations were carried out using conventional atomic absorption spectrometers, and there were in essence two different approaches. In the first one, dual-channel spectrometers with a hydrogen or deuterium lamp were used, applying the two-line method for background correction; in the second one, a line source was used that emitted an atomic line, which overlapped with the molecular spectrum. The first approach had the advantage that any spectral interval could be accessed, but it was susceptible to spectral interference; the second one had the advantage that the conventional background correction systems could be used to minimize spectral interferences, but had the problem that an atomic line had to be found, which was overlapping sufficiently well with the maximum of the molecular absorption spectrum. More recently a variety of molecular absorption spectra were investigated using a low-resolution polychromator with a CCD array detector, but no attempt was made to use this approach for quantitative determination of non-metals. The recent introduction and commercial availability of high-resolution continuum source atomic absorption spectrometers is offering completely new possibilities for molecular absorption spectrometry and its use for the determination of non-metals. The use of a high-intensity continuum source together with a high-resolution spectrometer and a CCD array detector makes possible selecting the optimum wavelength for the determination and to exclude most spectral interferences.  相似文献   

4.
The determination of phosphorus by graphite furnace atomic absorption spectrometry at the non-resonance line at 213.6 nm, and the capability of Zeeman-effect background correction (Z-BC) to deal with the fine-structured background absorption due to the PO molecule have been investigated in the presence of selected chemical modifiers. Two line source atomic absorption spectrometers, one with a longitudinally heated and the other with a transversely heated graphite tube atomizer have been used in this study, as well as two prototype high-resolution continuum source atomic absorption spectrometers, one of which had a longitudinally arranged magnet at the furnace. It has been found that Z-BC is capable correcting very well the background caused by the PO molecule, and also that of the NO molecule, which has been encountered when the Pd + Ca mixed modifier was used. Both spectra exhibited some Zeeman splitting, which, however, did not cause any artifacts or correction errors. The practical significance of this study is to confirm that accurate results can be obtained for the determination of phosphorus using Z-BC.  相似文献   

5.
A microwave-digestion system with a closed PTFE vessel was used to improve the leaching of inorganic constituents from biological samples with tetramethylammonium hydroxide (TMAH) and ethylenediaminetetraacetic acid (EDTA). The effects of microwave parameter settings and the quantities of TMAH and EDTA used on leaching efficiency were evaluated. This new digestion method has been applied to the standard reference materials NIST SRM 1577 B Bovine Liver 1515 Apple Leaves and NIES CRM No. 1 Pepperbush, No. 3 Chorella, No. 6 Mussel and No. 7 Tea Leaves. The major and minor elements in the digests were analyzed by flame atomic absorption spectrometry or graphite furnace atomic absorption spectrometry. Good agreement of the analytical results with the certified values was obtained.  相似文献   

6.
High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) has been used to investigate spectral and non-spectral interferences found with a conventional line source atomic absorption spectrometer in the determination of aluminum in pharmaceutical products containing elevated iron and sugar concentrations. A transversely heated graphite furnace was used as the atomizer in both spectrometers. The two most sensitive aluminum lines at 309.3 nm and 396.2 nm were investigated and it was found that an iron absorption line at 309.278 nm, in the vicinity of the aluminum line at 309.271 nm, could be responsible for some spectral interference. The simultaneous presence of iron and the organic components of the matrix were responsible for radiation scattering, causing high continuous and also structured background absorption at both wavelengths. The aluminum and iron absorption could not be separated in time, i.e., the iron interference could not be eliminated by optimizing the graphite furnace temperature program. However, an interference-free determination of aluminum was possible carrying out the measurements with HR-CS AAS at 396.152 nm after applying least squares background correction for the elimination of the structured background. Analytical working range and other figures of merit were determined and are presented for both wavelengths using peak volume registration (center pixel ± 1) and the center pixel only. Limits of detection and characteristic masses ranged from 1.1 to 2.5 pg and 13 to 43 pg, respectively. The method was used for the determination of the aluminum contamination in pharmaceutical formulations for iron deficiency treatment, which present iron concentrations from 10 to 50 g l− 1. Spike recoveries from 89% to 105% show that the proposed method can be satisfactorily used for the quality control of these formulations.  相似文献   

7.
Nil Ozbek 《Analytical letters》2018,51(17):2776-2789
Total fluorine concentrations in some fish species and seafood such as mussels, squid (calamary), and shrimp were determined using the molecular absorption of calcium monofluoride (CaF) generated in a graphite furnace using a high-resolution continuum source atomic absorption spectrometer and direct solid sampling. The fish fillets and seafood were dried at 110°C, minced finely, put on the platform using masses less than 1.2?mg, and introduced to the graphite furnace with 20?µg of calcium by a solid sampling accessory. The effects of CaF wavelength, graphite furnace program, amount of sample introduced to the furnace, the use of modifier on the determination of fluorine were investigated and optimized. The absolute limit of detection and characteristic mass of the method were 0.28 and 0.14?ng of fluorine, respectively. By applying the optimized parameters, the concentrations of fluorine in various fish species and seafood were determined.  相似文献   

8.
A high-resolution continuum-source atomic absorption spectrometer with a xenon short-arc lamp as the radiation source, a compact double echelle monochromator with a focal length of 302 mm and a spectral resolution of λ/Δλ≈110 000, and a UV-sensitive charged-coupled device (CCD) array detector was used to investigate the spectral interferences found with a conventional line-source atomic absorption spectrometer in the determination of thallium in marine sediment reference materials. A transversely heated graphite furnace was used as the atomizer unit, and the samples were introduced in the form of slurries. A strong iron absorption line at 276.752 nm, which was observed at atomization temperatures >2000 °C in the vicinity of the thallium resonance line at 276.787 nm, could be responsible for some of the interferences observed with low-resolution continuum-source background correction. The outstanding feature at atomization temperatures <2000 °C was the electron excitation spectrum of the gaseous SO2 molecule that exhibited a pronounced rotational fine structure, and is for sure the main reason for the observed spectral interferences. The molecular structures could be removed completely by subtracting a model spectrum recorded during the atomization of KHSO4, using a least squares algorithm. The same results, within experimental error, were obtained for thallium in a variety of marine sediment reference materials using ammonium nitrate as a modifier, ruthenium as a permanent modifier in addition to ammonium nitrate, and without a modifier, using aqueous standards for calibration, demonstrating the ruggedness of the method. A characteristic mass of 15–16 pg Tl was obtained, and a limit of detection of 0.02 μg g−1 Tl was calculated from the standard deviation of five repetitive determinations of HISS-1, the sediment with the lowest thallium content.  相似文献   

9.
An ultraviolet-photochemical generator (UV-PVG) capable of post-column on-line transformation of both organic and inorganic mercury species to cold vapor (Hg0) with subsequent detection by quartz tube-atomic absorption spectrometry (QT-AAS) was developed. Mercury(II), methylmercury(I), ethylmercury(I), and phenylmercury(I) were successfully detected after separation by reversed-phase high-performance liquid chromatography (RP-HPLC). Two types of AAS detectors were compared. The first was a commonly used line-source instrument while the second was a high-resolution continuum source (HR-CS) AAS. The latter provided better limits of detection: 0.47?µg?L?1 for Hg(II), 0.84?µg?L?1 for methylmercury(I), 0.80?µg?L?1 for ethylmercury(I), and 2.0?µg?L?1 for phenylmercury(I). The repeatability at 30?μg?L?1 was 3.6%, 4.1%, 6.2%, and 4.5% for these species (n?=?10). These figures of merit were comparable with those reported for more sensitive atomic fluorescence spectrometry. Nine sample extraction procedures were investigated. Extraction by tetramethylammonium hydroxide and HCl at 75?°C was selected as the only method compatible with the proposed separation and detection steps providing high extraction efficiency and no changes in mercury speciation. The applicability of the proposed high-performance liquid chromatography–ultraviolet-photochemical vapor generation–quartz tube-atomic absorption spectrometry method was demonstrated using fish samples and certified reference materials (CRM) DOLT-4 (dogfish liver) and ERM-CE464 (tuna fish). The results were comparable to those obtained by a reference method based on L-cysteine extraction and high-performance liquid chromatography–inductively coupled plasma-mass spectrometry (HPLC–ICP-MS) determination.  相似文献   

10.
A single element continuum source-atomic absorption spectrometer (CS-AAS) using a two-dimensional charge coupled array detector (2D-CCD) was assembled for use with graphite furnace atomization. The two-dimensional CCD was a split-frame transfer array, was thinned and back-illuminated for high quantum efficiency at approximately 200 nm, and was capable of an 80-Hz frame rate with a read noise of <15 electrons. The transfer of charges from the integrating arrays to the storage arrays took 0.65 ms, less than 4% of the frame period (16.42 ms). The transfer of charges to the storage array was perpendicular to the wavelength axis, eliminating source flicker noise, and was implemented without masking, producing vertical smearing. The smearing was manifested as a continuum background and was corrected using pixels between orders. The two-dimensional array, in conjunction with the high-resolution echelle spectrometer, allowed measurement of absorbance with respect to wavelength and height in the furnace. Computed absorbances were corrected for stray radiation and non-specific background absorption. Detection limits were equal to those for line source AAS, with the exception of As (193.7 nm) and Se (196.0 nm).  相似文献   

11.
Molecular absorption spectrometry (MAS), originally developed in the 1970s, is a technique to determine non-metals in flames and graphite furnaces by monitoring the absorbance of diatomic molecules. Early studies employed low resolution instruments designed for line source atomic absorption, which provided a limited choice of analytical wavelengths, insufficient spectral resolution, and spectral interferences. However, the development of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) instrumentation has allowed the analysis of challenging samples for non-metals as well as some difficult elements to determine by AAS, such as aluminum and phosphorus. In this review, theory and analytical considerations for MAS are discussed. The principles and limitations of low resolution MAS are described, along with its applications. HR-CS AAS instrumentation is reviewed, emphasizing performance characteristics most relevant for MAS. Applications of flame and HR-CS GFMAS are reviewed, highlighting the most significant work to date. The paper concludes with an evaluation of the enhanced analytical capabilities provided by HR-CS MAS.  相似文献   

12.
The literature about applications of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) with electrothermal atomization is reviewed. The historic development of HR-CS AAS is briefly summarized and the main advantages of this technique, mainly the ‘visibility’ of the spectral environment around the analytical line at high resolution and the unequaled simultaneous background correction are discussed. Simultaneous multielement CS AAS has been realized only in a very limited number of cases. The direct analysis of solid samples appears to have gained a lot from the special features of HR-CS AAS, and the examples from the literature suggest that calibration can be carried out against aqueous standards. Low-temperature losses of nickel and vanadyl porphyrins could be detected and avoided in the analysis of crude oil due to the superior background correction system. The visibility of the spectral environment around the analytical line revealed that the absorbance signal measured for phosphorus at the 213.6 nm non-resonance line without a modifier is mostly due to the PO molecule, and not to atomic phosphorus. The future possibility to apply high-resolution continuum source molecular absorption for the determination of non-metals is discussed.  相似文献   

13.
A simultaneous, multielement atomic absorption spectrometer utilizing a graphite furnace atomizer was constructed and evaluated. The optical arrangement employs a concave grating to combine the spectral output from a deuterium lamp and four hollow cathode lamps that are placed on the perimeter of a Rowland Circle. A graphite furnace atomizer is positioned on the circle at the point of convergence of the five light sources. Background correction is performed by the continuum source method. Simultaneous detection of the analyte absorption signals is accomplished with a charged-coupled device. Four test elements were used for evaluation purposes: cadmium, lead, copper and chromium. Even though the elements differ greatly in volatility, the detection limits approach the values published for single element GFAAS: 4, 12, 14 and 12 pg for Cd, Pb, Cu and Cr, respectively. The characteristic masses (integrated absorbance) for the four metals are 3, 24, 14 and 7 pg, respectively. Three drinking water reference materials are analyzed: NIST SRM #1643b (Trace Elements in Water), Fisher Scientific “Metals Drinking Water Standard,” and High Purity Standards “Drinking Water Metals Solution A and B”. The determined amounts were within 10% of the certified values for each of the four elements for all three reference materials.  相似文献   

14.
The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal.  相似文献   

15.
This work examines the new possibilities introduced with the arrival of commercially available high-resolution continuum source atomic absorption spectrometers for the determination of metalloids (B, Si, Ge, As, Se, Sb and Te) and non-metals (P, S, F, Cl, Br, I and N-based species), such as the improved potential to detect and correct for spectral overlaps and the strategies available to correct for matrix effects. In particular, and considering the increasing number of papers reporting on the use of molecular absorption spectrometry using graphite furnaces and flames as vaporizers, the work discusses in detail the advantages and limitations derived from the monitoring of molecular spectra from a practical point of view, in an attempt to guide future users of the technique.
Figure
Heating of a graphite furnace with platform  相似文献   

16.
The review covers publications of 2005–2016 on achievements in the development of electrothermal atomic absorption spectrometry (ETAAS). The main directions in the authors’ opinion are revealed, i.e., (1) improvements of the method and equipment and (2) studies of thermochemical processes in a graphite furnace. In the first group, the authors consider high- and low-resolution continuum source atomic absorption spectrometry, diode laser atomic absorption spectrometry, new designs of electrothermal atomizers, and new devices for ETAAS. Studies of mechanisms of element atomization, formation of analytical signals, and action of chemical modifiers belong to the second group.  相似文献   

17.
A method to prepare milk powder, bovine liver and bovine muscle samples for analysis by electrothermal atomic absorption spectrometry (ETAAS) is proposed. Samples are mixed with a small amount of tetramethylammonium hydroxide (TMAH) and a stable and homogeneous slurry is produced in ca. 2 h with heating at 60–70 °C. After such sample preparation and dilution with water, trace elements are determined in certified reference materials. Pyrolysis and atomisation temperatures are optimised for each element, and several modifiers are investigated. External calibration is used for every analyte. Limits of detection (LODs), precision and accuracy are reported for Cd, Pb, Ni, Cr, Cu and Ag and compared with those obtained after conventional acid digestion. The main advantages of the proposed method are the simplicity of sample preparation and the longer lifetime of the graphite tube.  相似文献   

18.
The diversity of applications of the graphite furnace is extraordinary, encompassing the fields of physics, thermochemistry, spectroscopy and analytical chemistry. In this respect, the graphite furnace has been used on a continuous basis as a research tool for nearly a century. Following its introduction as an atomization source for atomic absorption spectrometry by L'vov in 1959, its role in atomic spectrometry expanded considerably to encompass analytical applications in emision, fluorescence, absorption and mass spectrometry. In addition to its conspicuous use as an atomization source in these areas, it is frequently employed as a vaporizer when used in the format of combined and tandem sources with other instrumentation. The unique physico-chemical micro-environment which can be attained within the graphite furnace has also been used to advantage in a number of investigations, including the determination of gas- and solid-phase diffusion coefficients of high-temperature metal vapours, the heats of sublimation of refractory metals, fundamental optical constants and the measurement of the heats of desorption of adatoms from high-temperature surfaces. The range of such applications remains to be more fully explored. The attractive features of this source, viz., the high atomization/vaporization efficiency, comparatively long atomic vapour residence times, controllable chemical and thermal environment and its ability to handle high dissolved solids content samples (相似文献   

19.
The design, operating characteristics, and preliminary evaluation of an improved impaction-graphite furnace system, based on a theoretical study of particle size collected, are presented. After direct collection, the graphite furnace from the system is inserted in an atomic absorption spectrometer for analysis by simultaneous multielement atomic absorption spectrometry. This system has the potential for the direct and near real-time (few minutes) determination of metals in aerosols. The system has been preliminarily evaluated using aqueous solutions of chromium, and has then been applied to the determination of cadmium, chromium, lead, and manganese in cigarette smoke. Results show an increase ranging from almost five (lead) to sixteen (cadmium) over background levels.  相似文献   

20.
For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the ?ν = 0 vibrational sequence within the electronic transition X1+ → A1П, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of PdxSy molecules. At the 258.056 nm line, with the wavelength range covering central pixel ± 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg−1 in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg−1 in flame molecular absorption spectrometry.The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with sulphur content determined by X-ray fluorescence spectrometry).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号