首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several di(1-azulenyl)(6-azulenyl)methanes and 1,3-bis[(1-azulenyl)(6-azulenyl)methyl]azulenes were prepared by the condensation reaction of azulenes with diethyl 6-formylazulene-1,3-dicarboxylate under acidic conditions. The products were converted into di(1-azulenyl)(6-azulenyl)methylium hexafluorophosphates and azulene-1,3-diylbis[(1-azulenyl)(6-azulenyl)methylium] bis(hexafluorophosphate)s via hydride abstraction reaction with DDQ following the exchange of counterions. These mono- and dications exhibited high stability with large pK(R)(+) values (5.6-10.1), despite the captodative substitution of azulenes. The electrochemical reduction of the monocations upon cyclic voltammetry (CV) exhibited a reversible two-step, one-electron reduction wave with a small difference between the first reduction potential (E(1)(red)) and the second one (E(2)(red)), which exhibited the generation of highly amphoteric neutral radicals in solution. The electrochemical reduction of dications showed voltammograms, which were characterized by subsequent two single-electron waves and a two-electron transfer upon CV attributable to the formation of a radical cation, a diradical (or twitter ionic structure), and a dianionic species, respectively. Formation of a persistent neutral radical from a monocation was revealed by ESR and UV-vis spectroscopies and theoretical calculations. The ESR spectra of the neutral radical gave two hyperfine coupling constants: a(H) = 0.083 (6H) and 0.166 mT (9H) (g = 2.0024), indicating that an unpaired electron delocalizes over all three of the azulene rings. The stable monoanion, which shows the localization of the charge on the 6-azulenyl substituent, was also successfully generated from the di(1-azulenyl)(6-azulenyl)methane derivative.  相似文献   

2.
[reaction: see text] N,N-Di(6-azulenyl)-p-toluidine (1a) and N,N,N',N'-tetra(6-azulenyl)-p-phenylenediamine (2a) and their derivatives with 1,3-bis(ethoxycarbonyl) substituents on each 6-azulenyl group (1b and 2b) were prepared by Pd-catalyzed amine azulenylation and characterized as a study into new aromatic amines for multistage amphoteric redox materials. The redox behavior of each compound was characterized by cyclic voltammetry. These compounds undergo facile reduction to stable anion radicals and dianion diradicals owing to the resonance stabilization between the 6-azulenyl groups and exhibit electrochemical oxidation depending on the amine subunits. The ESR measurement of anion radicals and a dianion diradical generated by the electrochemical reduction of amine 1b and diamine 2b revealed that the unpaired electron of these radicals delocalizes over the entire azulene ring including the central nitrogen atoms. UV-vis spectral analysis of amines 1a,b and diamines 2a,b, taken during the electrochemical reduction, exhibited a gradual decrease of the absorption bands of the neutral species along with an increase of the new absorption maxima at 625, 605, 640, and 610 nm, respectively, with the development of well-defined isosbestic points at 502, 562, 478, and 545 nm, respectively. As indicated by a combined ESR and UV-vis spectral study, the species giving rise to the new absorption maxima are concluded to be the generation of anion radicals and dianion diradicals of aromatic amines and diamines with high thermodynamic stability.  相似文献   

3.
《Tetrahedron letters》2019,60(29):1929-1933
We synthesized a series of N-(6-azulenyl)-N-arylacetamides, and investigated their conformational preferences in solution and in the crystalline state by means of NMR and X-ray analyses. The results indicated that the conformational preferences of these amides are dependent on both the relative π-electron densities of the N-aromatic parts and the three-dimensional relationship of the carbonyl group to the aryl groups. The N-(6-azulenyl) group has a very different effect from the previously reported N-(2-azulenyl) group on the conformational preferences of aromatic amides.  相似文献   

4.
Mono-, bis-, tris-, and tetrakis(1-azulenylethynyl)benzene and mono- and bis(1-azulenylethynyl)thiophene derivatives 5-10 have been prepared by Pd-catalyzed alkynylation of ethynyl arenes with 1-iodoazulene derivative or the 1-ethynylazulene derivative with tetraiodobenzene and iodothiophenes under Sonogashira-Hagihara conditions. Compounds 5-10 reacted with tetracyanoethylene in a [2+2] cycloaddition reaction to afford the corresponding 1,1,4,4,-tetracyano-2-(5-isopropyl-3-methoxycarbonyl-1-azulenyl)-3-butadienyl chromophores 12-16 in excellent yields, except for the reaction of the tetrakis(1-azulenylethynyl)benzene derivative. 1,1,4,4,-Tetracyano-2,3-bis(1-azulenyl)butadiene (17) was also prepared by the similar reaction of bis(1-azulenyl)acetylene (11) with tetracyanoethylene (TCNE). The redox behavior of novel azulene derivatives 12-17 was examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which revealed multistep electrochemical reduction properties. Moreover, a significant color change was observed by visible spectroscopy under electrochemical reduction conditions.  相似文献   

5.
[structure: see text] This paper describes the cyclotrimerization reaction of di(2-azulenyl)acetylenes (2a,b) catalyzed by Co2(CO)8 to produce hexa(2-azulenyl)benzene derivatives (1a,b). The cyclooligomerization of 2a and 2b utilizing CpCo(CO)2 as a catalyst produced (eta5-cyclopentadienyl)[tetra(2-azulenyl)cyclobutadiene]cobalt complexes (3a,b). The redox behavior of hexakis(6-octyl-2-azulenyl)benzene (1b), bis(6-octyl-2-azulenyl)acetylene (2b), and the cobalt complexes 3a and 3b along with 6-octyl-2-phenylazulene (19) was examined by cyclic voltammetry (CV). The reduction of compound 1b exhibited multiple-electron transfers in one step upon CV with a reduction potential similar to that of compound 19. However, the CVs of compounds 2b, 3a, and 3b were characterized by stepwise waves because of the reduction of each azulene ring. The mesomorphic behaviors of 1b, 2b, and 19 were also studied by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and X-ray diffraction (XRD) techniques. A new series of azulene derivatives, 1b, 2b, and 19, substituted by a long alkyl chain at the 6-position shows mesomorphism with crystalline polymorphs. Compound 1b showed a large temperature range of hexagonal columnar mesophases (Col(ho)) from 115.5 to 199.9 degrees C. Compound 2b has rectangular columnar (Col(ro)), smectic E (S(E)), and nematic (N) mesophases. Compound 19 exhibited an S(E) mesophase.  相似文献   

6.
Aromatic amides bearing 2-azulenyl group on the amide nitrogen were synthesized and their structures were investigated. The π-electron density of the N-aryl group was found to influence the cis-trans conformational preferences of these compounds in solution. X-ray crystallography revealed that the plane of the 2-azulenyl ring has a strong tendency to lie coplanar with the amide plane when the azulene group is located on the same side as the amide oxygen atom.  相似文献   

7.
1,2-Di(6-azulenyl)tetraphenylbenzenes and (6-azulenyl)pentaphenylbenzenes were synthesized by Diels-Alder reactions of di(6-azulenyl)acetylenes and 6-(phenylethynyl)azulenes with tetraphenylcyclopentadienone. Cobalt-mediated cyclooligomerization of mono- and di(6-azulenyl)acetylenes afforded 1,3,5- and 1,2,4-tri(6-azulenyl)benzene derivatives together with (eta(5)-cyclopentadienyl)[tetra- and di(6-azulenyl)cyclobutadiene]cobalt complexes. The redox behavior of these novel (6-azulenyl)benzene derivatives and [tetra- and di(6-azulenyl)cyclobutadiene]cobalt complexes was examined by cyclic voltammetry (CV). Mono(6-azulenyl)benzenes exhibited a reduction wave upon CV. In contrast, 1,2-di(6-azulenyl)benzenes showed a two-step reduction wave at the similar potential region upon CV, which revealed the formation of a dianion stabilized by 6-azulenyl substituents under electrochemical reduction conditions. Three 6-azulenyl substituents on benzene in a 1,2,4 relationship also increased electron-accepting properties because of the formation of a closed-shell dianionic structure, whereas 1,3,5-tri(6-azulenyl)benzenes were reduced stepwise.  相似文献   

8.
The titled stable monocations, di(1-azulenyl)(2- and 3-thienyl)methyl cations 7a,b and 8a,b and dications composed of two di(1-azulenyl)methylium units connected with 2,5-thiophenediyl and 2,5-thieno[3,2-b]thiophenediyl spacers 9a,b and 10a,b were prepared by hydride abstraction of the corresponding methane derivatives. These mono- and dications 7a,b, 8a,b, 9a,b, and 10a,b showed high stability with large pK(R)+ values. The values of monocations 7a,b and 8a,b were 11.2-11.8 +/- 0.1 and 11.4-12.4 +/- 0.1, respectively. Two cation units in dications 9a,b and 10a,b were neutralized via one step at the pH of 11.1-11.7 +/- 0.1, which corresponds to the average of the pK(R)+ values of the dications and half-neutralized monocations. Electrochemical behavior of 7a,b, 8a,b, 9a,b, and 10a,b was examined by cyclic voltammetry (CV). Formation of the thienoquinoid products 18a,b and 19a,b from 9a,b and 10a,b was characterized by UV-vis spectroscopy under electrochemical reduction conditions. Chemical reduction of 9a,b and 10a,b with Zn powder in acetonitrile afforded 18a,b and 19a,b as deep-colored crystals, which exhibited rather high electron-donating ability.  相似文献   

9.
This paper describes an efficient preparation of 2-azulenylboronate (6) starting from 2-iodoazulene by halogen-metal exchange reaction using n-BuLi and subsequent quenching with 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. The boronate 6 has been found to undergo Pd-catalyzed Miyaura-Suzuki cross-coupling reaction with a range of aryl bromides including aromatic poly bromides utilizing Pd2(dba)3-P(t-Bu)3 as a catalyst and establishes a strategy to produce novel poly(2-azulenyl)benzenes, some of which are found to be insoluble in common organic solvents, however. The redox behavior of 2-arylazulenes and poly(2-azulenyl)benzenes was examined by cyclic voltammetry (CV) and compared with those of 6-azulenylbenzene derivatives reported previously.  相似文献   

10.
Several azulene-substituted thioketones, 1-thiobenzoylazulene (1a) and di(1-azulenyl) thioketone (2a) and their derivatives (1b and 2b-d) with alkyl substituents on each azulene ring, were prepared and their intramolecular pericyclization reaction was examined. The thioketones with a 3-alkyl substituent on each azulene ring exhibited the presumed pericyclization reaction under thermal and acid-catalyzed conditions, although the cases of the 1-azulenyl thioketones without the 3-alkyl substituents afforded a complex mixture under similar conditions. The intramolecular reaction following the intramolecular hydrogen transfer afforded the products 13b, 14b, and 14c. The products 13b and 14b were converted into the corresponding cations 18(+) and 19(+), which have structural similarity with that of the phenalenyl cation. These cations exhibited the expected two-step reduction waves upon CV, although the ESR analysis revealed that the neutral radical state did not have the presumed high stability.  相似文献   

11.
This paper describes the preparation of two tetracations 4a(4+) and 4b(4+) composed of di(1-azulenyl)methylium units based on a new structural principle of a cyanine-cyanine hybrid for the design of electrochromic materials with two color changes. Di- and monocations 5a(2+), 5b(2+) and 6a+, 6b+ composed of di(1-azulenyl)methylium units were also prepared for the purpose of comparison. The pKR+ values of the tetracations are rather high despite their tetracationic structure, although the stability of these cations decreases with the increase of the number of the existing cation units. The cyclic voltammetry (CV) of these cations revealed the presumed multielectron redox properties. However, the tetracations did not exhibit the idealized electrochemical behavior, in which subsequent two-electron reduction was presumed as the cyanine-cyanine hybrid, probably due to the less effective electrochemical interaction among the positive charges. The scope of the creation of the novel polyelectrochromic materials taking the new structural principle is demonstrated by these examples.  相似文献   

12.
2-Azulenyl trifluoromethanesulfonate was prepared by the reaction of 2-hydroxyazulene with trifluoromethanesulfonic anhydride in the presence of triethylamine as a base. Under the use of pyridine, 1-trifluoromethanesulfonylpyridinium trifluoromethanesulfonate further reacted with 2-azulenyl trifluoromethanesulfonate to give 1-(1-trifluoromethanesulfonyl-1,4-dihydropyridin-4-yl)azulenyl trifluoromethanesulfonate. Moreover, we found that azulenes also reacted with 1-trifluoromethanesulfonylpyridinium trifluoromethanesulfonate to give 4-(1-azulenyl)-1,4-dihydropyridine derivatives and 6-(1-azulenyl)-1-trifluoromethanesulfonyl-1-aza-hexa-1,3,5-triene depending on the reaction conditions. 2-Azulenyl trifluoromethanesulfonate was converted finally into the parent azulene in excellent yield by palladium-catalyzed reduction using formic acid as a reducing reagent.  相似文献   

13.
Directed lithiation of p-tolyl 1-azulenyl sulfone (1) at the 2-position of the azulenyl group was achieved by using lithium 2,2,6,6-tetramethylpiperidide (LTMP). The azulenyllithium thus generated could be efficiently trapped with various electrophiles to form 2-substituted derivatives 2 in moderate to good yields. p-Tolyl 2-trimethylsilyl-1-azulenyl sulfone (2a) was transformed into cyclic sulfone derivative 3a through the directed lithiation in the p-tolyl group and subsequent intramolecular ring closure at the 8-position. 2-(Phenylsulfanyl)-1-azulenyl p-tolyl sulfone (2b) suffered from desulfonylation to form 2-phenylsulfanylazulene (4). The Suzuki coupling reaction of 2-iodo-1-azulenyl p-tolyl sulfone (2d) with arylboronic acids followed by desulfonylation efficiently gave 2-arylazulenes 10.  相似文献   

14.
Azulene derivatives reacted with N-oxide of several heterocycles in the presence of trifluoromethanesulfonic anhydride (Tf2O) to afford 1-(pyridyl, quinolyl, and isoquinolyl)azulenes in good yield, respectively. In the case of the reaction with the 1-azulenyl methyl sulfide (12), 1,1′-biazulene derivative 13 was obtained under the similar reaction conditions. The first synthesis of unsymmetrical 1,3-di(pyridyl)azulene derivative was also established via our new preparation method following the electrophilic pyridinylation using the reaction with pyridine in the presence of Tf2O.  相似文献   

15.
The synthesis, crystal structure, and magnetic properties of two trinuclear oxo-centered carboxylate complexes are reported and discussed: [Cr3(mu3-O)(mu2-PhCOO)6(H2O)3]NO3.4H2O.2CH3OH (1) and [Cr3(mu3-O)(mu2-PhCOO)2(mu2-OCH2CH3)2(bpy)2(NCS)3] (2). For both complexes the crystal system is monoclinic, with space group C2/c for 1 and P1/n for 2. The structure of complex 1 consists of discrete trinuclear cations, associated NO3- anions, and lattice methanol and water molecules. The structure of complex 2 is built only by neutral discrete trinuclear entities. The most important feature of 2 is the unusual skeleton of the [Cr3O] core due to the lack of peripheral bridging ligands along one side of the triangular core, which is unique among the structurally characterized (mu3-oxo)trichromium(III) complexes. Magnetic measurements were performed in the 2-300 K temperature range. For complex 1, in the high-temperature region (T > 8 K), experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J12S1S2 - 2J13S1S3 - 2J23S2S3 (J12 = J13 = J23) with Jij = -10.1 cm(-1), g = 1.97, and TIP = 550 x 10(-6) emu mol(-1). The antisymmetric exchange interaction plays an important role in the magnetic behavior of the system, so in order to fit the experimental magnetic data at low temperature, a new magnetic model was used where this kind of interaction was also considered. The resulting fitting parameters are the following: Gzz = 0.25 cm(-1), delta = 2.5 cm(-1), and TIP = 550 x 10(-6) emu mol(-1). For complex 2, the experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J1(S1S2 + S1S3) - 2J2(S2S3) with J1 = -7.44 cm(-1), J2 = -51.98 cm(-1), and g = 1.99. The magnetization data allows us to deduce the ground term of S = 1/2, characteristic of equilateral triangular chromium(III) for complex 1 and S = 3/2 for complex 2, which is confirmed by EPR measurements.  相似文献   

16.
HB(3-(t)Bupz)(3)Tl and AlEt(3) in benzene yield {H(3-(t)Bupz)B(3-(t)Bupz)(2)-eta(2)}AlEt(2), 1, as a hydrocarbon-soluble crystalline solid. Compound 1 is also obtained in a related reaction involving ClAlEt(2) via a preferential metathesis of the Al-Cl bond. Crystal data for 1 at -101 degrees C: a = 11.770(3) ?, b = 11.054(3) ?, c = 21.973(6) ?, beta = 95.57(1) degrees, Z = 4, space group P2(1)/a. In 1 the Al center is four-coordinate with Al-C = 1.97(1) ? and Al-N = 1.99(1) ? and with C-Al-C = 127 degrees and N-Al-N = 101 degrees being the largest and smallest angles, respectively. The average N-B-N angle is 109(1) degrees. In toluene-d(8) and tetrahydrofuran-d(8), 1 shows two types of 3-(t)Bupz groups in the integral ratio 2:1 and two distinct ethyl ligands. At low temperature there is a broadening of the 3-(t)Bupz singlet that is assigned to the eta(2)-(t)Bupz ligands. Up to +60 degrees C, compound 1 is nonfluxional on the NMR time scale but does isomerize to {H(3-(t)Bupz)B(3-(t)Bupz)(5-(t)Bupz)-eta(2)}AlEt(2), 2. Crystal data for 2 at -172 degrees C: a = 29.235(5) ?, b = 11.298(1) ?, c = 22.033(3) ?, beta = 129.66(1) degrees, Z = 8, space group = C2/c. In 2 there is a pseudotetrahedral Al center with Al-C = 1.97(1) ? (average) and Al-N = 1.95(1) ? (average) and with C-Al-C = 119 degrees and N-Al-N = 98 degrees as the largest and smallest angles, respectively. The average N-B-N angle is 108(1) degrees. In 2 the eta(2)-tris(alkylpyrazolyl)borate ligand isomerizes by a 1,2-borotropic shift to give one 5-(t)Bupz fragment that is part of the eta(2)-N,N' aluminum-bonded ligand. Variable-temperature (1)H NMR spectra of 2 in toluene-d(8) and THF-d(8) reveal temperature-dependent exchange involving the 3-(t)Bupz moieties, with more rapid site exchange in toluene-d(8) than in THF-d(8). At low temperature there are two ethyl signals, one of which indicates diastereotopic methylene protons, as well as three (t)Bu signals in the ratio 1:1:1. The dynamic behavior of 2 is consistent with an eta(2) right harpoon over left harpoon eta(3) exchange process as opposed to an eta(2) right harpoon over left harpoon eta(1) exchange wherein the Al center is transiently three-coordinate. The isomerization of 1 to 2 has been studied in benzene-d(6) (DeltaH() = 21.0(2) kcal/mol, DeltaS() = -15(1) eu) and THF-d(8) (DeltaH() = 18.3(4) kcal/mol, DeltaS() = -15(1) eu) and compared to a related isomerization involving {H(2)B(3-(t)Bupz)(2)-eta(2)}AlMe(2) reported by Parkin and Looney [Polyhedron 1990, 9, 265] in benzene-d(6) (DeltaH() = 34.5(8) kcal/mol, DeltaS() = 6(2) eu). It is proposed that the rate-determining 1,2-borotropic shift in the 1 --> 2 reaction occurs in a noncoordinating (t)Bupz group and that this is followed by a rapid associative interchange of pz groups wherein the sterically less demanding 5-(t)Bupz moiety remains bound to the metal.  相似文献   

17.
The title complexes were obtained in neutral form (n = 0) as rac (1) and meso isomers (2). 2 was crystallized for X-ray diffraction and its temperature-dependent magnetism studied. It contains two antiferromagnetically coupled ruthenium(III) ions, bridged by the quinizarine dianion QL(2-) (quinizarine = 1,4-dihydroxy-9,10-anthraquinone). The potential of both the ligand (QLo --> QL4-) and the metal complex fragment combination [(acac)2RuII]2 --> ([(acac)2RuIV]2)4+ to exist in five different redox states creates a large variety of combinations, which was assessed for the electrochemically reversibly accessible 2+, 1+, 0, 1-, 2- forms using cyclic voltammetry as well as EPR and UV-vis-NIR spectroelectrochemistry. The results for the two isomers are similar: Oxidation to 1+ or 2+ causes the emergence of a near-infrared band (1390 nm), without revealing an EPR response even at 4 K. Reduction to 1- or 2- produces an EPR signal, signifying metal-centered spin but no near-infrared absorption. Tentatively, we assume metal-based oxidation of [(acac)2RuIII(mu-QL2-)RuIII(acac)2] to a mixed-valent intermediate [(acac)2RuIII(mu-QL2-)RuIV(acac)2]+ and ligand-centered reduction to a radical complex [(acac)2RuIII(mu-QL.3-)RuIII(acac)2 (-) with antiferromagnetic three-spin interaction.  相似文献   

18.
The synthesis, structural characterization, spectroscopic, and electrochemical properties of N(2)S(2)-ligated Ni(II) complexes, (N,N'-bis(2-mercaptoethyl)-1,5-diazacyclooctane)nickel(II), (bme-daco)Ni(II), and (N,N'-bis(2-mercapto-2-methylpropane)1,5-diazacyclooctane)nickel(II), (bme-daco)Ni(II), derivatized at S with alcohol-containing alkyl functionalities, are described. Reaction of (bme-daco)Ni(II) with 2-iodoethanol afforded isomers, (N,N'-bis(5-hydroxy-3-thiapentyl)-1,5-diazacyclooctane-O,N,N',S,S')halonickel(II) iodide (halo = chloro or iodo), 1, and (N,N'-bis(5-hydroxy-3-thiapentyl)-1,5-diazacyclooctane-N,N',S,S')nickel(II) iodide, 2, which differ in the utilization of binding sites in a potentially hexadentate N(2)S(2)O(2) ligand. Blue complex 1 contains nickel in an octahedral environment of N(2)S(2)OX donors; X is best modeled as Cl. It crystallizes in the monoclinic space group P2(1)/n with a = 12.580(6) ?, b = 12.291(6) ?, c = 13.090(7) ?, beta = 97.36(4) degrees, and Z = 4. In contrast, red complex 2 binds only the N(2)S(2) donor set forming a square planar nickel complex, leaving both -CH(2)CH(2)OH arms dangling; the iodide ions serve strictly as counterions. 2 crystallizes in the orthorhombic space group Pca2(1) with a = 15.822(2) ?, b = 13.171(2) ?, c = 10.0390(10) ?, and Z = 4. Reaction of (bme-daco)Ni(II) with 1,3-dibromo-2-propanol affords another octahedral Ni species with a N(2)S(2)OBr donor set, ((5-hydroxy-3,7-dithianonadiyl)-1,5-diazacyclooctane-O,N,N',S,S')bromonickel(II) bromide, 3. Complex 3 crystallizes in the orthorhombic space group Pca2(1) with a = 15.202(5) ?, b = 7.735(2) ?, c = 15.443(4) ?, and Z = 4. Complex 4.2CH(3)CN was synthesized from the reaction of (bme-daco)Ni(II) with 1,3-dibromo-2-propanol. It crystallizes in the monoclinic space group P2/c with a = 20.348(5) ?, b = 6.5120(1) ?, c = 20.548(5) ?, and Z = 4.  相似文献   

19.
Optically pure (1R,2R)- and (1S,2S)-1,2-bis(pentafluorophenyl)ethane-1,2-diol (1) were synthesized from key intermediates (R)- and (S)-2-hydroxy-2-(pentafluorophenyl)acetonitrile (2), both of which were prepared by the lipase LIP-catalyzed transesterification (E = 465). The absolute configuration of (S)-2 was determined by X-ray structural analysis after transformation into (S)-alpha-cyano-2,3,4,5,6-pentafluorobenzyl (S)-6-methoxy-alpha-methyl-2-naphthaleneacetate (S,S)-9. In addition, the crystal structure of (S,S)-9 has an interesting well-ordered packing pattern which shows face-to-face stacking interactions and end-to-end parallel contacts between the pentafluorophenyl and 6-methoxynaphthyl groups of the adjacent molecules.  相似文献   

20.
Reaction of the trivacant lacunary complex, alpha-Na(12)[As(2)W(15)O(56)], with an aqueous solution of Fe(NO(3))(3).9H(2)O yields the sandwich-type polyoxometalate, alphabetabetaalpha-Na(12)(Fe(III)OH(2))(2)Fe(III)(2)(As(2)W(15)O(56))(2) (Na1). The structure of this complex, determined by single-crystal X-ray crystallography (a = 13.434(1) A, b = 13.763(1) A, c = 22.999(2) A, alpha = 90.246(2) degrees, beta = 102.887(2) degrees, gamma = 116.972(1) degrees, triclinic, Ponemacr;, R1 = 5.5%, based on 25342 independent reflections), consists of an Fe(III)(4) unit sandwiched between two trivacant alpha-As(2)W(15)O(56)(12)(-) moieties. UV-vis, infrared, cyclic voltammetry, and elemental analysis data are all consistent with the structure determined from X-ray analysis. Magnetization studies confirm that the four Fe(III) centers are antiferromagnetically coupled. A cyclic voltammogram of Na1 reveals that a three-wave W(VI) system replaces the two-wave W(VI) system found in the precursor alpha-As(2)W(15)O(56)(12)(-) complex. The observed modifications in the CV patterns of Na1 and alpha-As(2)W(15)O(56)(12)(-) are most likely due to subsequent changes in the acid-base properties of two reduced POMs that occur as a result of Fe(III) incorporation. Na1 is shown to be more efficient than the monosubstituted complex alpha(2)-As(2)(Fe(III)OH(2))W(17)O(61)(7)(-) in the electrocatalytic reduction of dioxygen. This is attributed to cooperativity effects among the adjacent Fe(III) centers in Na1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号