首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
N,N-Dimethyl-o-toluidine, N,N-dimethylaniline, and N,N-diethylaniline were treated with n-butyllithium-tmeda in diethyl ether-hexane solution to give o-lithioarylamines, which react with various electrophiles (benzophenone, dicyclohexyl ketone, benzaldehyde, and Ph(H)CNPh) to form the corresponding (2-dialkylaminophenyl)alcohols 1-HOCPh2-2-NMe2C6H4 (1), 1-HOCCy2-2-NMe2C6H4 (2), 1-HOCPh2CH2-2-NMe2C6H4 (4), 1-HOC(H)PhCH2-2-NMe2C6H4 (6), and 1-HOCPh2-2-NEt2C6H4 (7), and the 2-phenylaminoalkyl-dimethylaminobenzene derivatives 1-NMe2-2-NH(Ph)C(H)PhC6H4 (3) and 1-NMe2-2-NH(Ph)C(H)PhCH2C6H4 (5). Compounds 1-7 were characterized spectroscopically (NMR, IR, MS) and by crystal structure determination.  相似文献   

2.
Four manganese(II) complexes of di-2-pyridyl ketone N(4)-methyl (HDpyMeTsc) and N(4)-ethyl thiosemicarbazones (HDpyETsc) were synthesized and physico-chemically characterized by means of partial elemental analyses, molar conductance measurements, electronic, infrared and EPR spectral studies. The complexes are represented as [Mn(DpyMeTsc)2] (1), [Mn(HDpyMeTsc)Cl2] (2), [Mn(HDpyMeTsc)2](ClO4)2 · H2O (3) and [Mn(DpyETsc)2] · 2H2O (4). The crystal structure of [Mn(DpyMeTsc)2] was established by single crystal X-ray diffraction studies. The compound crystallizes into a monoclinic lattice with P21/n space group. Manganese(II) exists in a distorted octahedral geometry in the complex.  相似文献   

3.
Novel systems for palladium-catalyzed selective oxidation of ethylene to a mixture of ethylene glycol mono- and di-acetates as the major reaction products (90-95% selectivity) with H2O2 in acetic acid solution at ambient pressure and 20 °C were developed. The catalytic reaction is very efficient with up to 90% combined yield of glycol acetates with H2O2 as a limiting reagent and 1 mol% catalyst loading. The catalytic systems developed are comprised of a mixture of Pd(OAc)2, and 6-methyl substituted (2-pyridyl)methanesulfonate and/or di(6-pyridyl)ketone ligands. Compositions of the binary, Pd(OAc)2-dpk, Pd(OAc)2-Me-dpms, and ternary, Pd(OAc)2-dpk-Me-dpms, systems have been studied by means of 1H NMR spectroscopy and ESI mass spectrometry. Kinetics studies were performed as well and plausible reaction mechanism was suggested, which features facially chelating ligand-enabled facile oxidation of PdIIC2H4OAc intermediates with H2O2 to form PdIVC2H4OAc transients.  相似文献   

4.
The reactions of representative 2-pyridyl oximes with NiII salts in the presence of a base have been investigated. The synthetic study has led to the new triangular complexes [Νi3(ppko)6]·2H2O·0.5EtOH·MeOH (1·2H2O·0.5EtOH·MeOH), [Νi3(mpko)3(HCO2)2(mpkoH)2](ClO4) (2) and [Νi3(ppko)3(HCO2)2(ppkoH)2](ClO4) (3), where ppko is the anion of phenyl(2-pyridyl)ketone oxime and mpko is the anion of methyl(2-pyridyl)ketone oxime. The structures of compounds 1 and 2 have been determined by single crystal X-ray diffraction. The ppko ligand in 1 adopts four different coordination modes including the unique NpyridylOoximate chelating one which gives rise to a 6-membered chelating ring, while the neutral and the deprotonated oxime ligands in 2 adopt three different coordination modes. The magnetic properties of 1 and 2 have been studied by variable-temperature dc magnetic susceptibility techniques which indicate antiferromagnetic interactions.  相似文献   

5.
This paper reports the syntheses and characterization of two phosphonate compounds Cd{(2-C5H4NO)CH(OH)PO3}(H2O)2 (1) and Zn{(4-C5H4NO)CH(OH)PO3} (2) based on hydroxy(2-pyridyl N-oxide)methylphosphonic and hydroxy(4-pyridyl N-oxide)methylphosphonic acids. Compound 1 has a chain structure in which dimers of edge-shared {CdO6} octahedra are linked by {CPO3} tetrahedra through corner-sharing. The pyridyl rings reside on the two sides of the inorganic chain. Compound 2 has a layer structure where the inorganic chains made up of corner-sharing {ZnO4} and {CPO3} tetrahedra are covalently connected by pyridyl N-oxide groups. Crystal data for 1: triclinic, space group , a=6.834(1) Å, b=7.539(1) Å, c=10.595(2) Å, α=84.628(3)°, β=74.975(4)°, γ=69.953(4)°. For 2: triclinic, space group , a=5.219(1) Å, b=8.808(2) Å, c=9.270(2) Å, α=105.618(5)°, β=95.179(4)°, γ=94.699(4)°.  相似文献   

6.
Condensation of di-2-pyridyl ketone with S-methyldithiocarbazate or S-benzyldithiocarbazate yields potentially bridging ligands of the form Py2CNNHC(S)SR; Hdpksme (R = Me; the di-2-pyridyl ketone Schiff base of S-methyldithiocarbazate) and Hdpksbz (R = Bz; the di-2-pyridyl ketone Schiff base of S-benzyldithiocarbazate). Complexation of these ligands with Cu(II) in a 1:1 M ratio leads to the formation of dinuclear complexes of the general formula [Cu(NNNS)X]2 (X = Cl, NO3, H2O). X-ray crystallographic structure determinations show that each ligand provides three donor atoms (NNS) in a meridional configuration to one metal, viz. one of the pyridine nitrogen atoms, the azomethine nitrogen atom and the thiolate sulfur, while the nitrogen atom of the second pyridyl group forms a bridge to another copper(II) ion within the dimer. The coordination geometry around each copper(II) ion is approximately square pyramidal, the basal plane of which is composed of one of the pyridine nitrogen atoms, the azomethine nitrogen atom and a chlorido, nitrato or aqua ligand. The apical position of the square pyramid is always occupied by the pyridine nitrogen atom of the second ligand.  相似文献   

7.
The use of di-2-pyridyl ketone oxime, (py)pkoH, and phenyl 2-pyridyl ketone oxime, ppkoH, in copper(II) hexafluoroacetylacetonate chemistry is reported. The reaction of CuCl2·2H2O with one and two equivalents of ppkoH and Na(hfac), respectively, in CH2Cl2 affords the dinuclear complex [Cu2(hfac)2(ppko)2] (1) in excellent yield. The replacement of ppkoH by (py)pkoH gives the isostructural compound [Cu2(hfac)2{(py)pko}2] (2) in good yield. The CuII atoms in both 1 and 2 are doubly bridged by the oximate groups of two η1112 ppko and (py)pko ligands, respectively. The bridging Cu–(R–NO)–Cu′ units are not planar, with the torsion angles being 23.2° (1) and 20.3° (2). A bidentate chelating hfac ligand completes five-coordination at each square pyramidal metal ion. The hfac-free reaction system CuCl2·2H2O/(py)pkoH/NEt3 (1:2:1) gives instead the mononuclear complex [CuCl{(py)pko}{(py)pkoH}] (3) in very good yield. The CuII atom is coordinated by two N,N′-bidentate (py)pko/(py)pkoH chelates and a monodentate chloride anion resulting in a distorted square pyramidal geometry around the metal center. Variable-temperature, solid-state dc magnetic studies were carried out on the representative dinuclear complex 1 in the 2.0–300 K range. The data indicate a very strong antiferromagnetic exchange interaction and a resulting S = 0 ground state, which is well isolated from the S = 1 excited state. The J value of −720 cm−1 was derived from the fitting of the experimental data using the Hamiltonian H = −J(S1 · S2).  相似文献   

8.
The preparation, crystal structures and spectroscopic characterization of four oxalate copper(II) complexes containing the 4,4′-dimethyl-2,2′-bipyridine (Mebpy) or di(2-pyridyl)sulfide (DPS) nitrogen ligands namely [μ-(ox){Cu(Mebpy)(NO3)(H2O)}2] (1), [μ-(ox){Cu(Mebpy)(ClO4)(H2O)}2] (2), [μ-(ox){Cu(DPS)(H2O)}2](ClO4)2 (3) and [Cu(DPS)(ox)(H2O)] · 2H2O (4) are described. X-ray diffraction measurements have shown that complexes 13 are binuclear, in which the oxalate anion bridges two Cu(II) centers, while the complex (4) is mononuclear and the oxalate anion adopts the terminal bidentate chelating coordination mode. In 1 and 2 the Cu(II) sites display a distorted octahedral geometry (4+2 environment) and in compounds 3 and 4 the Cu(II) centers exhibit a slightly distorted square pyramidal geometry. In addition, complexes 1 and 2 present a 2D supramolecular arrangement through hydrogen bonds between coordination water molecules and nitrate or perchlorate anions and π-stacking interaction between the pyridyl rings of Mebpy nitrogen ligands.  相似文献   

9.
2,4,6-Tris(2-pyridyl)-1,3,5-triazine (tptz) undergoes hydrolysis in the presence of copper(II) acetate affording bis(2-pyridylcarbonyl)amido-copper(II) and free 2-pyridylcarboxylic anion. Two compounds of formulas [Cu(NC5H4COO)2]·2H2O (1) and [Cu(NC5H4CO)2N(tptz)](N(CN)2)·7H2O (2), where NC5H4COO? and (NC5H4CO)2N? are 2-pyridylcarboxylate and bis(2-pyridylcarbonyl)amido-anion, respectively, were obtained from methanol/ethanol solution of tptz with copper acetate; they were characterized by element analysis and single crystal X-ray diffraction method. Single crystal XRD analysis shows that in complex 1 coordination number around Cu atom is 4 with distorted square-planar coordination geometry and in complex 2 coordination number around Cu atom is 6 with distorted octahedral geometry. Crystal data for 1: a = 5.1359(10) Å, b = 7.6471(15) Å, c = 9.2303(18) Å, α = 74.90(3)°, β = 84.36(3)°, γ = 71.37(3)°, space group P1, crystal system triclinic, Z = 1, V = 331.6(1) Å3, d calc = 1.721 g/cm3. Crystallographic data for 2: space group C2/c, crystal system monoclinic, a = 23.976(5) Å, b = 15.465(3) Å, c = 18.649(4) Å, β = 92.66(3)°, V = 6907(2) Å3, d calc = 1.0448 g/cm3, Z = 4.  相似文献   

10.
Tris(2-thienyl)phosphine, P(C4H3S)3, reacts with [Os3(CO)12] at 110 °C to give the phosphine-substituted derivatives [Os3(CO)11{P(C4H3S)3}] (1), [Os3(CO)10{P(C4H3S)3}2] (2) and [Os3(CO)9{P(C4H3S)3}3] (4), as well as the C-H activated product [Os3(μ-H)(CO)9{μ-P(C4H2S)(C4H3S)2}{P(C4H3S)3}] (3), in which the bridging ligand is equatorially coordinated to two osmium atoms. Thermolysis of 2 in refluxing toluene results in the formation of 3. Compound 1 can also be prepared in high yield from [Os3(CO)11(NCMe)]. The reaction of [Os3(μ-H)2(CO)10] with tris(2-thienyl)phosphine at room temperature afforded [Os3(μ-H)2(CO)9{P(C4H3S)3}] (5) and [Os3H(μ-H)(CO)10{P(C4H3S)3}] (6), with the ligand coordinated through the phosphorus atom whereas at elevated temperature the cyclometallated compounds [Os3(μ-H)(CO)93-P(C4H2S)(C4H3S)2}] (7) and [Os3(μ-H)(CO)83-P(C4H2S)(C4H3S)2{P(C4H3S)3}] (8) were obtained in addition to 5. Heating 6 in refluxing heptane furnished 5 via loss of one carbonyl ligand. Thermolysis of 1 and 3 in refluxing toluene gives 7 and 8, respectively, in good yields. In 3, the μ-P(C4H2S)(C4H3S)2 ligand is coordinated through the phosphorus to one Os atom and through a σ-Os-C bond to the second osmium atom. Compound 7 contains the μ3-P(C4H2S)(C4H3S)2 ligand bound through phosphorus to one Os atom, through a σ-Os-C bond to another and by an η2 (π)-interaction to the third osmium atom. Compounds 1, 2 and 4 contain the ligand coordinated exclusively through the phosphorus atom. The crystal and molecular structures of 2, 3, 5, 6 and 7 are reported.  相似文献   

11.
Ni(II) complexes (15) of di-2-pyridyl ketone N(4)-phenylthiosemicarbazone (HL) have been synthesized and spectrochemically characterized. Elemental analyses revealed a NiL2 · 2H2O stoichiometry for compound 1. However, the single crystals isolated revealed a composition NiL2 · 0.5(H2O)0.5(DMF). The compound crystallizes into a monoclinic lattice with the space group P21/n. Complexes 2, 3 and 4 are observed to show a 1:1:1 ratio of metal:thiosemicarbazone:gegenion, with the general formula NiLX · yH2O [X = NCS, y = 2 for 2; X = Cl, y = 3 for 3 and X = N3, y = 4.5 for 4]. Compound 5 is a dimer with a metal:thiosemicarbazone:gegenion ratio of 2:2:1, with the formula [Ni2L2(SO4)] · 4H2O.  相似文献   

12.
A crystalline salt of 2.2.2-cryptand and oxalic acid, 4,7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane bis(hydrogen oxalate), [H2(Crypt-222)]2+·2(C2HO4)?, was synthesized and studied by single crystal X-ray diffraction. In the crystal structure of this salt, the 2.2.2-cryptand cation has a rare conformation of the exo-exo type in which the H atoms at the two protonated N atoms are oriented outside the cryptand cavity. The geometric parameters (bond lengths, bond angles, torsion angles) of the [H2(Crypt-222)]2+ cation and two independent C2HO 4 ? anions were found with a fairly high accuracy, and the crystal packing was determined. These ions are linked by interionic hydrogen bonds to form thick infinite layers parallel to the (xz) plane.  相似文献   

13.
The crystal structure of 17-(1-adamantyl)amino-6,7,9,10-tetrahydro-17H-dibenzo[d, m][1,3,6,9,12,2]pentaoxaphosphacyclotetradecine-17-oxide, C26H32NO6P (I), was determined by single crystal X-ray diffraction. The monoclinic structure of I (space group P21 /n; a=10.951(2), b=16.730(3), c=13.255(3) , =99.22(2)°, Z=4) was solved by direct methods and refined anisotropically by the full-matrix least-squares method; R=0.042 for all independent 4197 reflections (CAD-4 automatic diffractometer, MoK). The geometrical parameters of molecule I (bond lengths and bond and torsion angles) were determined with a good accuracy.  相似文献   

14.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

15.
Condensation of (S)-2-amino-2′-hydroxy-1,1′-binaphthyl with 1 equiv. of pyrrole-2-carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives (S)-2-(pyrrol-2-ylmethyleneamino)-2′-hydroxy-1,1′-binaphthyl (1H2) in 90% yield. Deprotonation of 1H2 with NaH in THF, followed by reaction with LnCl3 in THF gives, after recrystallization from a toluene or benzene solution, dinuclear complexes (1)3Y2(thf)2 · 3C7H8 (3 · 3C7H8) and (1)3Yb2(thf)2 · 3C6H6 (4 · 3C6H6), respectively, in good yields. Treatment of 1H2 with Ln[N(SiMe3)2]3 in toluene under reflux, followed by recrystallization from a benzene solution gives the dimeric amido complexes {1-LnN(SiMe3)2}2 · 2C6H6 (Ln = Y (5 · 2C6H6), Yb (6 · 2C6H6)) in good yields. All compounds have been characterized by various spectroscopic techniques, elemental analyses and X-ray diffraction analyses. Complexes 5 and 6 are active catalysts for the polymerization of methyl methacrylate (MMA) in toluene, affording syn-rich poly-(MMA)s.  相似文献   

16.
Two new vanadium squarates have been synthesized, characterized by infrared and thermal behavior and their structures determined by single crystal X-ray diffraction. Both structures are made of discrete, binuclear vanadium entity but in 1, [V(OH)(H2O)2(C4O4)]2·2H2O the vanadium atom is trivalent and the entity is neutral while in 2, (NH4)[(VO)2(OH)(C4O4)2(H2O)3]·3H2O, the vanadium atom is tetravalent and the entity is negatively charged, balanced by the presence of one ammonium ion. Both molecular anions are bridged by two terminal μ2 squarate ligands. 1 crystallizes in the triclinic system, space group P-1, with lattice constants a=7.5112(10) Å, b=7.5603(8) Å, c=8.2185(8) Å, α=106.904(8)°, β=94.510(10)°, γ=113.984(9)° while 2 crystallizes in the monoclinic system, space group C2/c, with a=14.9340(15) Å, b=6.4900(9) Å, c=17.9590(19) Å and β=97.927(12)°. From the magnetic point of view, V(III) binuclear species show ferromagnetic interactions at low temperatures. However, no anomalies pointing to magnetic ordering are observed down to 2 K.  相似文献   

17.
The crystal structures of (2-aza-2-benzyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N′,N″) nickel(II) methylene chloride solvate [Ni(2-NCH2C6H5NCTPP); 4], (2-aza-2-benzyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N′,N″) palladium(II) [Pd(2-NCH2C6H5NCTPP); 5] and bromo(2-aza-2-benzyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N′,N″) manganese(III) toluene solvate [Mn(2-NCH2C6H5NCTPP)Br·C6H5CH3; 3·C6H5CH3] have been established. The coordination sphere around the Ni2+ ion in 4 (or Pd2+ ion in 5) is distorted square planar (DSP), whereas for Mn3+ in 3·C6H5CH3, it is a square-based pyramid with the Br atom lying in the axial site. The g value of 11.34, measured from parallel polarization of the X-band EPR spectra at 4 K, is consistent with a high spin mononuclear manganese(III) centre (S = 2) in 3. The magnitude of the axial (D) zero-field splitting (ZFS) for the mononuclear Mn(III) centre in 3 was determined approximately to be 1.4 cm−1 by paramagnetic susceptibility measurements and conventional EPR spectroscopy.  相似文献   

18.
A series of diorganotin(IV) and triorganotin(IV) compounds of the type [R2Sn(pca)2ClSnR3]2 (RPhCH21, 2-ClC6H4CH22, 2-FC6H4CH23, 4-FC6H4CH24, 4-CNC6H4CH25, 4-ClC6H4CH26, 2,4-Cl2C6H3CH27; Hpca2-methylpyrazine-5-acid), [(nBu)3Sn(pca)]8, [(CH3)2Cl2Sn(pca)Sn(CH3)2(pca)]9, {[(nBu)2Sn(pca)]2O}210 and {[Ph2Sn(pca)]3O2[Ph2Sn(OCH3)]} 11 have been obtained by reactions of 2-methylpyrazine-5-acid with triorganotin(IV) chloride, diorganotin(IV) dichloride, and diorganotin(IV) oxide. All compounds were characterized by elemental, IR, and NMR spectra analyses. The crystal structure of compounds 1, 8-11 were determined by X-ray single crystal diffraction, which revealed that compound 1 was tetranuclear macrocyclic structures with seven-coordinate and five-coordinate tin atoms, compounds 8 and 9 were polymeric chain structures with five-coordinate and seven-coordinate tin atoms, compounds 10 and 11 were monomeric structures with six-coordinate and five-coordinate tin atoms.  相似文献   

19.
The reaction of [CpRu(PPh3)2Cl] and [CpOs(PPh3)2Br] with chelating 2-(2′-pyridyl)imidazole (N ∩ N) ligands and NH4PF6 yields cationic complexes of the type [CpM(N ∩ N)(PPh3)]+ (1: M = Ru, N ∩ N = 2-(2′-pyridyl)imidazole; 2: M = Ru, N ∩ N = 2-(2′-pyridyl)benzimidazole; 3: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-dimethylimidazole; 4: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-diphenylimidazole; 5: M = Os, N ∩ N = 2-(2′-pyridyl)imidazole; 6: M = Os, N ∩ N = 2-(2′-pyridyl)benzimidazole). They have been isolated and characterized as their hexafluorophosphate salts. Similarly, in the presence of NH4PF6, [Cp∗Ir(μ-Cl)Cl]2 reacts in dry methanol with N ∩ N chelating ligands to afford in excellent yield [Cp∗Ir(N ∩ N)Cl]PF6 (7: N ∩ N = 2-(2′-pyridyl)imidazole; 8: N ∩ N = 2-(2′-pyridyl)benzimidazole). All the compounds have been characterized by infrared and NMR spectroscopy and the molecular structure of [1]PF6, [2]PF6 and [7]PF6 by single-crystal X-ray structure analysis.  相似文献   

20.
The complex [Zn(Ofpa)2(H2O)4] · 2H2O (Ofpa is 2-formylphenoxyacetate) is synthesized and characterized by X-ray structural analysis and IR spectroscopy. The crystal is monoclinic: a= 25.254(5), b= 6.952(1), c= 13.951(3) Å, = 116.41(3)°, Z= 4, space group C2/c, R= 0.034. The zinc atom in the centrosymmetric complex is coordinated by two monodentate carboxylate ligands (Zn–O 2.123(1) Å) and by four water molecules (Zn–O 2.085(1) and 2.092(2) Å). The oxygen atom of the aldehyde group is not involved in coordination. Complexes and solvate water molecules in the crystal are united into a three-dimensional framework via hydrogen bonds and – interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号