首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we consider the optimal reinsurance and dividend strategy for an insurer. We model the surplus process of the insurer by the classical compound Poisson risk model modulated by an observable continuous-time Markov chain. The object of the insurer is to select the reinsurance and dividend strategy that maximizes the expected total discounted dividend payments until ruin. We give the definition of viscosity solution in the presence of regime switching. The optimal value function is characterized as the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation and a verification theorem is also obtained.  相似文献   

2.
We consider an optimal impulse control problem on reinsurance, dividend and reinvestment of an insurance company. To close reality, we add fixed and proportional transaction costs to this problem. The value of the company is associated with expected present value of net dividends pay out minus the net reinvestment capitals until ruin time. We focus on non-cheap proportional reinsurance. We prove that the value function is a unique solution to associated Hamilton–Jacobi–Bellman equation, and establish the regularity property of the viscosity solution under a weak assumption. We solve the non-uniformly elliptic equation associated with the impulse control problem. Finally, we derive the value function and the optimal strategy of the control problem.  相似文献   

3.
We study the optimal reinsurance policy and dividend distribution of an insurance company under excess of loss reinsurance. The objective of the insurer is to maximize the expected discounted dividends. We suppose that in the absence of dividend distribution, the reserve process of the insurance company follows a compound Poisson process. We first prove existence and uniqueness results for this optimization problem by using singular stochastic control methods and the theory of viscosity solutions. We then compute the optimal strategy of reinsurance, the optimal dividend strategy and the value function by solving the associated integro-differential Hamilton–Jacobi–Bellman Variational Inequality numerically.  相似文献   

4.
In this article we consider the surplus process of an insurance company within the Cramér–Lundberg framework with the intention of controlling its performance by means of dynamic reinsurance. Our aim is to find a general dynamic reinsurance strategy that maximizes the expected discounted surplus level integrated over time. Using analytical methods we identify the value function as a particular solution to the associated Hamilton–Jacobi–Bellman equation. This approach leads to an implementable numerical method for approximating the value function and optimal reinsurance strategy. Furthermore we give some examples illustrating the applicability of this method for proportional and XL-reinsurance treaties.  相似文献   

5.
We investigate the Cauchy problem for a nonlinear parabolic partial differential equation of Hamilton–Jacobi–Bellman type and prove some regularity results, such as Lipschitz continuity and semiconcavity, for its unique viscosity solution. Our method is based on the possibility of representing such a solution as the value function of the associated stochastic optimal control problem. The main feature of our result is the fact that the solution is shown to be jointly regular in space and time without any strong ellipticity assumption on the Hamilton–Jacobi–Bellman equation.  相似文献   

6.
In this paper, we study the optimal investment and optimal reinsurance problem for an insurer under the criterion of mean-variance. The insurer’s risk process is modeled by a compound Poisson process and the insurer can invest in a risk-free asset and a risky asset whose price follows a jump-diffusion process. In addition, the insurer can purchase new business (such as reinsurance). The controls (investment and reinsurance strategies) are constrained to take nonnegative values due to nonnegative new business and no-shorting constraint of the risky asset. We use the stochastic linear-quadratic (LQ) control theory to derive the optimal value and the optimal strategy. The corresponding Hamilton–Jacobi–Bellman (HJB) equation no longer has a classical solution. With the framework of viscosity solution, we give a new verification theorem, and then the efficient strategy (optimal investment strategy and optimal reinsurance strategy) and the efficient frontier are derived explicitly.  相似文献   

7.
In this paper, we study the optimal dividend and capital injection problem with the penalty payment at ruin. The dividend strategy is assumed to be restricted to a small class of absolutely continuous strategies with bounded dividend density. By considering the surplus process killed at the time of ruin, we transform the problem to a combined stochastic and impulse control one up to ruin with a free boundary at zero. We illustrate the theoretical verifications for different types of capital injection strategies comparing to the conventional results given in the literature, where the capital injections are made before the time of ruin. Under the assumption of restricted dividend density, the value function is proved as the unique increasing, bounded, Lipschitz continuous and upper semi-continuous at zero viscosity solution to the corresponding quasi-variational Hamilton–Jacobi–Bellman (HJB) equation. The uniqueness of such class of viscosity solutions is shown by considering its boundary condition at infinity. The optimality of a specific band-type strategy is proved for the case when the premium rate is (i) greater than or (ii) less than the ceiling dividend rate respectively. Some numerical examples are presented under the exponential and gamma claim size assumptions.  相似文献   

8.
We consider the optimal reinsurance and investment problem in an unobservable Markov-modulated compound Poisson risk model, where the intensity and jump size distribution are not known but have to be inferred from the observations of claim arrivals. Using a recently developed result from filtering theory, we reduce the partially observable control problem to an equivalent problem with complete observations. Then using stochastic control theory, we get the closed form expressions of the optimal strategies which maximize the expected exponential utility of terminal wealth. In particular, we investigate the effect of the safety loading and the unobservable factors on the optimal reinsurance strategies. With the help of a generalized Hamilton–Jacobi–Bellman equation where the derivative is replaced by Clarke’s generalized gradient as in Bäuerle and Rieder (2007), we characterize the value function, which helps us verify that the strategies we constructed are optimal.  相似文献   

9.
Complementing existing results on minimal ruin probabilities, we minimize expected discounted penalty functions (or Gerber–Shiu functions) in a Cramér–Lundberg model by choosing optimal reinsurance. Reinsurance strategies are modeled as time dependent control functions, which lead to a setting from the theory of optimal stochastic control and ultimately to the problem’s Hamilton–Jacobi–Bellman equation. We show existence and uniqueness of the solution found by this method and provide numerical examples involving light and heavy tailed claims and also give a remark on the asymptotics.  相似文献   

10.
In this paper we consider a doubly discrete model used in Dickson and Waters (biASTIN Bulletin 1991; 21 :199–221) to approximate the Cramér–Lundberg model. The company controls the amount of dividends paid out to the shareholders as well as the capital injections which make the company never ruin in order to maximize the cumulative expected discounted dividends minus the penalized discounted capital injections. We show that the optimal value function is the unique solution of a discrete Hamilton–Jacobi–Bellman equation by contraction mapping principle. Moreover, with capital injection, we reduce the optimal dividend strategy from band strategy in the discrete classical risk model without external capital injection into barrier strategy , which is consistent with the result in continuous time. We also give the equivalent condition when the optimal dividend barrier is equal to 0. Although there is no explicit solution to the value function and the optimal dividend barrier, we obtain the optimal dividend barrier and the approximating solution of the value function by Bellman's recursive algorithm. From the numerical calculations, we obtain some relevant economical insights. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we study an insurer’s reinsurance–investment problem under a mean–variance criterion. We show that excess-loss is the unique equilibrium reinsurance strategy under a spectrally negative Lévy insurance model when the reinsurance premium is computed according to the expected value premium principle. Furthermore, we obtain the explicit equilibrium reinsurance–investment strategy by solving the extended Hamilton–Jacobi–Bellman equation.  相似文献   

12.
This paper studies optimal investment and reinsurance problems for an insurer under regime-switching models. Two types of risk models are considered, the first being a Markov-modulated diffusion approximation risk model and the second being a Markov-modulated classical risk model. The insurer can invest in a risk-free bond and a risky asset, where the underlying models for investment assets are modulated by a continuous-time, finite-state, observable Markov chain. The insurer can also purchase proportional reinsurance to reduce the exposure to insurance risk. The variance principle is adopted to calculate the reinsurance premium, and Markov-modulated constraints on both investment and reinsurance strategies are considered. Explicit expressions for the optimal strategies and value functions are derived by solving the corresponding regime-switching Hamilton–Jacobi–Bellman equations. Numerical examples for optimal solutions in the Markov-modulated diffusion approximation model are provided to illustrate our results.  相似文献   

13.
《Optimization》2012,61(5):677-687
We consider the problem of approximate minimax for the Bolza problem of optimal control. Starting from the method of dynamic programming (Bellman) we define the ?-value function to be the approximation for the value function being a solution to the Hamilton–Jacobi equation.  相似文献   

14.
This paper treats a finite time horizon optimal control problem in which the controlled state dynamics are governed by a general system of stochastic functional differential equations with a bounded memory. An infinite dimensional Hamilton–Jacobi–Bellman (HJB) equation is derived using a Bellman-type dynamic programming principle. It is shown that the value function is the unique viscosity solution of the HJB equation.  相似文献   

15.
This paper considers the dividend optimization problem for an insurance company under the consideration of internal competition between different units inside the company. The objective is to find a reinsurance policy and a dividend payment scheme so as to maximize the expected discounted value of the dividend payment, and the expected present value of an amount which the insurer earns until the time of ruin. By solving the corresponding constrained Hamilton-Jacobi-Bellman (HJB) equation, we obtain the value function and the optimal reinsurance policy and dividend payment.  相似文献   

16.
In this paper we consider a diffusion approximation to a classical risk process, where the claims are reinsured by some reinsurance with deductible b ∈ [0,b?], where b = b? means “no reinsurance” and b = 0 means “full reinsurance”. The cedent can choose an adapted reinsurance strategy (b t ) t ≥0, i.?e. the deductible can be changed continuously. In addition, the cedent has to inject fresh capital in order to keep the surplus positive. The problem is to minimise the expected discounted cost over all admissible reinsurance strategies. We find an explicit expression for the value function and the optimal strategy using the Hamilton–Jacobi–Bellman approach. Some examples illustrate the method.  相似文献   

17.
This paper investigates the investment and reinsurance problem in the presence of stochastic volatility for an ambiguity-averse insurer (AAI) with a general concave utility function. The AAI concerns about model uncertainty and seeks for an optimal robust decision. We consider a Brownian motion with drift for the surplus of the AAI who invests in a risky asset following a multiscale stochastic volatility (SV) model. We formulate the robust optimal investment and reinsurance problem for a general class of utility functions under a general SV model. Applying perturbation techniques to the Hamilton–Jacobi–Bellman–Isaacs (HJBI) equation associated with our problem, we derive an investment–reinsurance strategy that well approximates the optimal strategy of the robust optimization problem under a multiscale SV model. We also provide a practical strategy that requires no tracking of volatility factors. Numerical study is conducted to demonstrate the practical use of theoretical results and to draw economic interpretations from the robust decision rules.  相似文献   

18.
In this work we investigate the optimal proportional reinsurance-investment strategy of an insurance company which wishes to maximize the expected exponential utility of its terminal wealth in a finite time horizon. Our goal is to extend the classical Cramér–Lundberg model introducing a stochastic factor which affects the intensity of the claims arrival process, described by a Cox process, as well as the insurance and reinsurance premia. The financial market is supposed not influenced by the stochastic factor, hence it is independent on the insurance market. Using the classical stochastic control approach based on the Hamilton–Jacobi–Bellman equation we characterize the optimal strategy and provide a verification result for the value function via classical solutions to two backward partial differential equations. Existence and uniqueness of these solutions are discussed. Results under various premium calculation principles are illustrated and a new premium calculation rule is proposed in order to get more realistic strategies and to better fit our stochastic factor model. Finally, numerical simulations are performed to obtain sensitivity analyses.  相似文献   

19.
We consider the problem of minimizing the probability of ruin by purchasing reinsurance whose premium is computed according to the mean–variance premium principle, a combination of the expected-value and variance premium principles. We derive closed-form expressions of the optimal reinsurance strategy and the corresponding minimum probability of ruin under the diffusion approximation of the classical Cramér–Lundberg risk process perturbed by a diffusion. We find an explicit expression for the reinsurance strategy that maximizes the adjustment coefficient for the classical risk process perturbed by a diffusion. Also, for this risk process, we use stochastic Perron’s method to prove that the minimum probability of ruin is the unique viscosity solution of its Hamilton–Jacobi–Bellman equation with appropriate boundary conditions. Finally, we prove that, under an appropriate scaling of the classical risk process, the minimum probability of ruin converges to the minimum probability of ruin under the diffusion approximation.  相似文献   

20.
We investigate the optimal reinsurance problem under the criterion of maximizing the expected utility of terminal wealth when the insurance company has restricted information on the loss process. We propose a risk model with claim arrival intensity and claim sizes distribution affected by an unobservable environmental stochastic factor. By filtering techniques (with marked point process observations), we reduce the original problem to an equivalent stochastic control problem under full information. Since the classical Hamilton–Jacobi–Bellman approach does not apply, due to the infinite dimensionality of the filter, we choose an alternative approach based on Backward Stochastic Differential Equations (BSDEs). Precisely, we characterize the value process and the optimal reinsurance strategy in terms of the unique solution to a BSDE driven by a marked point process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号