首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present a systematic scheme for derivations of asymptotic expansions including higher-order terms, with estimates, of the effective electrical conductivity of periodic dilute composites in terms of the volume fraction occupied by the inclusions. The conductivities of the inclusion and the matrix may be anisotropic. Our derivations are based on layer potential techniques, and valid for high contrast mixtures and inclusions with Lipschitz boundaries. The asymptotic expansion is given in terms of the polarization tensor and the volume fraction of the inclusions. Important properties, such as symmetry and positivity, of the anisotropic polarization tensors are derived.  相似文献   

2.
We study two-dimensional stationary and nonstationary boundary value problems of fluid filtration in an anisotropic inhomogeneous porous layer whose conductivity is modeled by a not necessarily symmetric tensor. For the velocity field, we introduce generalized singular Cauchy and Cauchy type integrals whose kernels are expressed via the leading solutions of the main equations and have a hydrodynamic interpretation. We obtain the limit values of a Cauchy type generalized integral (Sokhotskii-Plemelj generalized formulas). This permits one to develop a method for solving boundary value problems for the filtration velocity field. The idea of the method and its efficiency are illustrated for the boundary value problem of filtration in adjacent layers of distinct conductivities and the problem of the evolution of liquid interface.  相似文献   

3.
We are concerned with the quantitative study of the electric field perturbation due to the presence of an inhomogeneous conductive rod embedded in a homogenous conductivity. We sharply quantify the dependence of the perturbed electric field on the geometry of the conductive rod. In particular, we accurately characterize the localization of the gradient field (i.e., the electric current) near the boundary of the rod where the curvature is sufficiently large. We develop layer‐potential techniques in deriving the quantitative estimates and the major difficulty comes from the anisotropic geometry of the rod. The result complements and sharpens several existing studies in the literature. It also generates an interesting application in EIT (electrical impedance tomography) in determining the conductive rod by a single measurement, which is also known as the Calderón's inverse inclusion problem in the literature.  相似文献   

4.
Anisotropic meshes are known to be well-suited for problems which exhibit anisotropic solution features.Defning an appropriate metric tensor and designing an efcient algorithm for anisotropic mesh generation are two important aspects of the anisotropic mesh methodology.In this paper,we are concerned with the natural metric tensor for use in anisotropic mesh generation for anisotropic elliptic problems.We provide an algorithm to generate anisotropic meshes under the given metric tensor.We show that the inverse of the anisotropic difusion matrix of the anisotropic elliptic problem is a natural metric tensor for the anisotropic mesh generation in three aspects:better discrete algebraic systems,more accurate fnite element solution and superconvergence on the mesh nodes.Various numerical examples demonstrating the efectiveness are presented.  相似文献   

5.
Two explicit two-time-level difference schemes for the numerical solution of Maxwell’s equations are proposed to simulate propagation of small-amplitude extremely and super low frequency electromagnetic signals (200 Hz and lower) in the Earth-ionosphere waveguide with allowance for the tensor conductivity of the ionosphere. Both schemes rely on a new approach to time approximation, specifically, on Maxwell’s equations represented in integral form with respect to time. The spatial derivatives in both schemes are approximated to fourth-order accuracy. The first scheme uses field equations and is second-order accurate in time. The second scheme uses potential equations and is fourth-order accurate in time. Comparative test computations show that the schemes have a number of important advantages over those based on finite-difference approximations of time derivatives. Additionally, the potential scheme is shown to possess better properties than the field scheme.  相似文献   

6.
Ismail Caylak  Rolf Mahnken 《PAMM》2012,12(1):319-320
In this work we develop a model to describe the induced plasticity of polymers at large deformations. Polymers such as stretch films exhibit a pronounced strength in the loading direction. The undeformed state of the films is isotropic, whereas after the uni-axial loading the material becomes anisotropic. In order to consider this induced anisotropy during the stretch process, a spectral decomposition of the inelastic right CAUCHY-GREEN tensor is done. Therefore, the yield function can be formulated as a function of the anisotropic tensor, where again the anisotropic tensor is a function of the maximum eigenvalue. A backward EULER scheme is used for updating the evolution equations, and the algorithmic tangent operator is derived. The numerical implementation of the resulting set of constitutive equations is used in a finite element program and for parameter identification. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
(Electric) polarization tensors describe part of the leading order term of asymptotic voltage perturbations caused by low volume fraction inhomogeneities of the electrical properties of a medium. They depend on the geometry of the support of the inhomogeneities and on their admittivity contrast. Corresponding asymptotic formulas are of particular interest in the design of reconstruction algorithms for determining the locations and the material properties of inhomogeneities inside a body from measurements of current flows and associated voltage potentials on the body’s surface. In this work, we consider the two-dimensional case only and provide an analytic representation of the polarization tensor in terms of spectral properties of the double layer integral operator associated with the support of simply connected conductivity inhomogeneities. Furthermore, we establish that an (infinitesimal) simply connected inhomogeneity has the shape of an ellipse, if and only if the polarization tensor is a rational function of the admittivity contrast with at most two poles whose residues satisfy a certain algebraic constraint. We also use the analytic representation to provide a proof of the so-called Hashin–Shtrikman bounds for polarization tensors; a similar approach has been taken previously by Golden and Papanicolaou and Kohn and Milton in the context of anisotropic composite materials.  相似文献   

8.
We consider the direct problem of aerial electric sounding for a layered medium with a vertical cylindrical anomaly. We determine the minimum size of the anomaly when it is indistinguishable from an infinite layer of the same conductivity. The integral equation is solved by the integral current method. The concept of apparent conductivity is introduced for sounding problems using a magnetic dipole. The calculations support the conjecture of the locality of aerial sounding and prove the high efficiency of the integral current method for such problems.  相似文献   

9.
We propose and analyze a numerical scheme for nonlinear degenerate parabolic convection–diffusion–reaction equations in two or three space dimensions. We discretize the diffusion term, which generally involves an inhomogeneous and anisotropic diffusion tensor, over an unstructured simplicial mesh of the space domain by means of the piecewise linear nonconforming (Crouzeix–Raviart) finite element method, or using the stiffness matrix of the hybridization of the lowest-order Raviart–Thomas mixed finite element method. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. Checking the local Péclet number, we set up the exact necessary amount of upstream weighting to avoid spurious oscillations in the convection-dominated case. This technique also ensures the validity of the discrete maximum principle under some conditions on the mesh and the diffusion tensor. We prove the convergence of the scheme, only supposing the shape regularity condition for the original mesh. We use a priori estimates and the Kolmogorov relative compactness theorem for this purpose. The proposed scheme is robust, only 5-point (7-point in space dimension three), locally conservative, efficient, and stable, which is confirmed by numerical experiments.This work was supported by the GdR MoMaS, CNRS-2439, ANDRA, BRGM, CEA, EdF, France.  相似文献   

10.
The monodomain model is a widely used model in electrocardiology to simulate the propagation of electrical potential in the myocardium. In this paper, we investigate a positive nonlinear control volume finite element scheme, based on Godunov's flux approximation of the diffusion term, for the monodomain model coupled to a physiological ionic model (the Beeler–Reuter model) and using an anisotropic diffusion tensor. In this scheme, degrees of freedom are assigned to vertices of a primal triangular mesh, as in conforming finite element methods. The diffusion term which involves an anisotropic tensor is discretized on a dual mesh using the diffusion fluxes provided by the conforming finite element reconstruction on the primal mesh and the other terms are discretized by means of an upwind finite volume method on the dual mesh. The scheme ensures the validity of the discrete maximum principle without any restriction on the transmissibility coefficients. By using a compactness argument, we obtain the convergence of the discrete solution and as a consequence, we get the existence of a weak solution of the original model. Finally, we illustrate by numerical simulations that the proposed scheme successfully removes nonphysical oscillations in the propagation of the wavefront and maintains conduction velocity close to physiological values.  相似文献   

11.
We justify the linear response theory for an ergodic Schrödinger operator with magnetic field within the noninteracting particle approximation, and derive a Kubo formula for the electric conductivity tensor. To achieve that, we construct suitable normed spaces of measurable covariant operators where the Liouville equation can be solved uniquely. If the Fermi level falls into a region of localization, we recover the well-known Kubo-Str?eda formula for the quantum Hall conductivity at zero temperature.  相似文献   

12.
The two-dimensional electrical impedance tomography problem is considered in the case of a piecewise constant electrical conductivity. The task is to determine the unknown boundary separating the regions with different conductivity values, which are known. Input information is the electric field measured on a portion of the outer boundary of the domain. A numerical method for solving the problem is proposed, and numerical results are presented.  相似文献   

13.
A theory of the limit equilibrium of an anisotropic medium under the general plasticity condition in the plane strain state is developed. The proposed yield criterion (the limit equilibrium condition) is obtained by combining the von Mises–Hill yield criterion of an ideally plastic anisotropic material and Prandtl's limit equilibrium condition for a medium under the general plasticity law. It is shown that the problem is statically determinate, i.e., if the boundary conditions are specified in stresses, the stress state in plastic region can only be obtained using equilibrium equations. It is established that the equations describing the stress state are hyperbolic and have two families of characteristic curves that intersect at variable angles. In deriving the equations describing the velocity field, the material is assumed to be rigid plastic, and the associated law of flow is applied. It is shown that the equations for the velocities are also hyperbolic, and their characteristic curves are identical with those of the equations for stresses. However, the directions of the principal values of the stress and strain rate tensors are different due to the anisotropy of the material. The characteristic directions differ from the isotropic case in that the normal and tangential components of the stress tensor do not satisfy the limit conditions. It is established that the equations obtained allow of partial solutions, and in this case, at least one family of characteristic curves consists of straight lines. The conditions along the lines of discontinuity of the velocity are investigated, and it is shown that, as in the isotropic case, these are characteristic curves of the system of governing equations. In the anisotropic formulation, the well-known Rankine problem of the limit state of a ponderable layer is solved. From an analysis of the velocity field it is shown that plastic flow of the entire layer is possible only for a slope angle equal to the angle of internal friction. For slope angles less than the angle of internal friction, the solutions obtained are solutions of problems of the pressure of the medium on the retaining walls. The change in this pressure as a function of the parameters of anisotropy is investigated, and turns out to be significant.  相似文献   

14.
Two-dimensional recurrence resolvents for an inhomogeneous thin body (plates of variable thickness and shells) are derived by an asymptotic method based on the three-dimensional equations of the coupled dynamic problem of the thermoelasticity of an anisotropic body, which are solved in the case of anisotropy, having, at each point, one plane of symmetry perpendicular to the transverse axis. Recurrence formulae are derived in a general formulation for determining the components of the stress tensor, the strain vector and the function of the change in the temperature field, when different boundary conditions of dynamic problems of the theory of coupled thermoelasticity and thermal conductivity are given on the end surfaces of a thin body. An algorithm for determining the analytical and numerical (necessary) solutions of these boundary-value problems with an arbitrarily specified accuracy is developed.  相似文献   

15.
H. Romanowski  J. Schrder 《PAMM》2004,4(1):268-269
A characteristic feature of ferroelectric crystals is the appearance of a spontaneous polarisation, where its direction can be reversed by an applied electric field. This quantity, that has a maximum value at high electric‐fields, depends on the loading history of the material. In this paper we discuss a thermodynamic consistent phenomenological model for an assumed transversely isotropic ferroelectric crystal, where the history dependency is modelled by internal variables. The anisotropic behaviour is governed by isotropic tensor functions, depending on a finite set of invariants, that satisfy automatically the symmetry relationships of the considered body. The main goal of this investigation is to capture some characteristics of nonlinear ferroelectrica, such as the polarisation‐electric‐field and the strain‐electric‐field (butterfly) hysteresis loops. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We study the stability properties of, and the phase error present in, a finite element scheme for Maxwell's equations coupled with a Debye or Lorentz polarization model. In one dimension we consider a second order formulation for the electric field with an ordinary differential equation for the electric polarization added as an auxiliary constraint. The finite element method uses linear finite elements in space for the electric field as well as the electric polarization, and a theta scheme for the time discretization. Numerical experiments suggest the method is unconditionally stable for both Debye and Lorentz models. We compare the stability and phase error properties of the method presented here with those of finite difference methods that have been analyzed in the literature. We also conduct numerical simulations that verify the stability and dispersion properties of the scheme. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

17.
We consider a mathematical model which describes the dynamic process of contact between a piezoelectric body and an electrically conductive foundation. We model the material’s behavior with a nonlinear electro-viscoelastic constitutive law; the contact is frictionless and is described with the normal compliance condition and a regularized electrical conductivity condition. We derive a variational formulation for the problem and then, under a smallness assumption on the data, we prove the existence of a unique weak solution to the model. We also investigate the behavior of the solution with respect the electric data on the contact surface and prove a continuous dependence result. Then, we introduce a fully discrete scheme, based on the finite element method to approximate the spatial variable and the backward Euler scheme to discretize the time derivatives. We treat the contact by using a penalized approach and a version of Newton’s method. We implement this scheme in a numerical code and, in order to verify its accuracy, we present numerical simulations in the study of two-dimensional test problems. These simulations provide a numerical validation of our continuous dependence result and illustrate the effects of the conductivity of the foundation, as well.  相似文献   

18.
We propose and analyze in this paper a numerical scheme for nonlinear degenerate parabolic convection–diffusion–reaction equations in two or three space dimensions. We discretize the time evolution, convection, reaction, and source terms on a given grid, which can be nonmatching and can contain nonconvex elements, by means of the cell‐centered finite volume method. To discretize the diffusion term, we construct a conforming simplicial mesh with the vertices given by the original grid and use the conforming piecewise linear finite element method. In this way, the scheme is fully consistent and the discrete solution is naturally continuous across the interfaces between the subdomains with nonmatching grids, without introducing any supplementary equations and unknowns or using any interpolation at the interfaces. We allow for general inhomogeneous and anisotropic diffusion–dispersion tensors, propose two variants corresponding respectively to arithmetic and harmonic averaging, and use the local Péclet upstream weighting in order to only add the minimal numerical diffusion necessary to avoid spurious oscillations in the convection‐dominated case. The scheme is robust, efficient since it leads to positive definite matrices and one unknown per element, locally conservative, and satisfies the discrete maximum principle under the conditions on the simplicial mesh and the diffusion tensor usual in the finite element method. We prove its convergence using a priori estimates and the Kolmogorov relative compactness theorem and illustrate its behavior on a numerical experiment. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

19.
We study the asymptotic behavior as time tends to infinity of the solution of an initial-boundary value problem for a system of nonlinear integro-differential equations that arises in the mathematical modeling of penetration of electromagnetic field into a medium whose electric conductivity substantially depends on temperature. Both homogeneous and inhomogeneous boundary conditions are considered. The exponential stabilization of the solution is established.  相似文献   

20.
 本文在星形多边形网格上, 构造了扩散方程新的单调有限体积格式.该格式与现有的基于非线性两点流的单调格式的主要区别是, 在网格边的法向流离散模板中包含当前边上的点, 在推导离散法向流的表达式时采用了定义于当前边上的辅助未知量, 这样既可适应网格几何大变形, 同时又兼顾了当前网格边上物理量的变化. 在光滑解情形证明了离散法向流的相容性.对于具有强各向异性、非均匀张量扩散系数的扩散方程, 证明了新格式是单调的, 即格式可以保持解析解的正性. 数值结果表明在扭曲网格上, 所构造的格式是局部守恒和保正的, 对光滑解有高于一阶的精度, 并且, 针对非平衡辐射限流扩散问题, 数值结果验证了新格式在计算效率和守恒精度上优于九点格式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号