首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) and ion trap mass spectrometry have been used to study the fragmentation behavior of native peptides and peptide derivatives prepared for de novo sequencing applications. Sulfonic acid derivatized peptides were observed to fragment more extensively and up to 28 times more efficiently than the corresponding native peptides. Tandem mass spectra of native peptides containing aspartic or glutamic acids are dominated by cleavage on the C-terminal side of the acidic residues. This significantly limits the amount of sequence information that can be derived from those compounds. The MS/MS spectra of native tryptic peptides containing oxidized Met residues show extensive loss of CH(3)SOH and little sequence-specific fragmentation. On the other hand, the tandem mass spectra of derivatized peptides containing Asp, Glu and oxidized Met show much more uniform fragmentation along the peptide backbone. The AP-MALDI tandem mass spectra of some derivatized peptides were shown to be qualitatively very similar to the corresponding vacuum MALDI postsource decay mass spectra, which were obtained on a reflector time-of-flight instrument. However, the ion trap mass spectrometer offers several advantages for peptide sequencing relative to current reflector time-of-flight instruments including improved product ion mass measurement accuracy, improved precursor ion selection and MS(n). These latter capabilities were demonstrated with solution digests of model proteins and with in-gel digests of 2D-gel separated proteins.  相似文献   

2.
A simple method of solid-phase derivatization and sequencing of tryptic peptides has been developed for rapid and unambiguous identification of spots on two-dimensional gels using post-source decay (PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The proteolytic digests of proteins are chemically modified by 4-sulfophenyl isothiocyanate. The derivatization reaction introduces a negative sulfonic acid group at the N-terminus of a peptide, which can increase the efficiency of PSD fragmentation and enable the selective detection of only a single series of fragment ions (y-ions). This chemically assisted method avoids the limitation of high background normally observed in MALDI-PSD spectra, and makes the spectra easier to interpret and facilitates de novo sequencing of internal fragment. The modification reaction is conducted in C(18) microZipTips to decrease the background and to enhance the signal/noise. Derivatization procedures were optimized for MALDI-PSD to increase the structural information and to obtain a complete peptide sequence even in critical cases. The MALDI-PSD mass spectra of two model peptides and their sulfonated derivatives are compared. For some proteins unambiguous identification could be achieved by MALDI-PSD sequencing of derivatized peptides obtained from in-gel digests of phosphorylase B and proteins of hepatic satellite cells (HSC).  相似文献   

3.
Derivatization of tryptic peptides using an Ettan CAF matrix-assisted laser desorption/ionization (MALDI) sequencing kit in combination with MALDI-post source decay (PSD) is a fast, accurate and convenient way to obtain de novo or confirmative peptide sequencing data. CAF (chemically assisted fragmentation) is based on solid-phase derivatization using a new class of water stable sulfonation agents, which strongly improves PSD analysis and simplifies the interpretation of acquired spectra. The derivatization is performed on solid supports, ZipTip(microC18, limiting the maximum peptide amount to 5 microg. By performing the derivatization in solution enabled the labeling of tryptic peptides derived from 100 microg of protein. To increase the number of peptides that could be sequenced, derivatized peptides were purified using multidimensional liquid chromatography (MDLC) prior to MALDI sequencing. Following the first dimension strong cation exchange (SCX) chromatography step, modified peptides were separated using reversed-phase chromatography (RPC). During the SCX clean up step, positively charged peptides are retained on the column while properly CAF-derivatized peptides (uncharged) are not. A moderately complex tryptic digest, prepared from six different proteins of equimolar amounts, was CAF-derivatized and purified by MDLC. Fractions from the second dimension nano RPC step were automatically sampled and on-line dispensed to MALDI sample plates and analyzed using MALDI mass spectrometry fragmentation techniques. All proteins in the derivatized protein mixture digest were readily identified using MALDI-PSD or MALDI tandem mass spectrometry (MS/MS). More than 40 peptides were unambiguously sequenced, representing a seven-fold increase in the number of sequenced peptides in comparison to when the CAF-derivatized protein mix digest was analyzed directly (no MDLC-separation) using MALDI-PSD. In conclusion, MDLC purification of CAF-derivatized peptides significantly increases the success rate for de novo and confirmative sequencing using various MALDI fragmentation techniques. This new approach is not only applicable to single protein digests but also to more complex digests and could, thus, be an alternative to electrospray ionization MS/MS for peptide sequencing.  相似文献   

4.
Tryptic digests of three proteins are reacted with O-methylisourea in order to convert lysine residues to homoarginines. The resulting homoarginine-terminated peptides exhibit more intense MALDI mass spectral peaks than their lysine-terminated predecessors. This simple chemical reaction should therefore facilitate protein sequencing and mass mapping.  相似文献   

5.
Post source decay (PSD) analysis of precursor ions generated from matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is a powerful tool for amino acid sequencing and primary structure analysis of proteins. N-Terminal sulfonation has become an effective derivatization strategy in facilitating de novo peptide sequencing by the formation of predominate y-type ion series in MALDI PSD spectra. Recently, an effective and inexpensive N-terminal derivatization method has been reported using 4-sulfophenyl isothiocyanate (SPITC) as the derivatization reagent (J. Mass. Spectrom. 2003; 38: 373-377). In this paper, we report an improvement in the derivatization procedure with this reagent that involves replacing an organic co-reagent with other chemicals and eliminating the use of organic solvent. The method is demonstrated on a model peptide and on tryptic digests of two proteins. The results indicate that the improved sulfonation reaction can be implemented with high efficiency under aqueous conditions and that the sensitivity of mass detection can be increased considerably.  相似文献   

6.
Optimized procedures have been developed for the addition of sulfonic acid groups to the N-termini of low-level peptides. These procedures have been applied to peptides produced by tryptic digestion of proteins that have been separated by two-dimensional (2-D) gel electrophoresis. The derivatized peptides were sequenced using matrix-assisted laser desorption/ionization (MALDI) post-source decay (PSD) and electrospray ionization-tandem mass spectrometry methods. Reliable PSD sequencing results have been obtained starting with sub-picomole quantities of protein. We estimate that the current PSD sequencing limit is about 300 fmol of protein in the gel. The PSD mass spectra of the derivatized peptides usually allow much more specific protein sequence database searches than those obtained without derivatization. We also report initial automated electrospray ionization-tandem mass spectrometry sequencing of these novel peptide derivatives. Both types of tandem mass spectra provide predictable fragmentation patterns for arginine-terminated peptides. The spectra are easily interpreted de novo, and they facilitate error-tolerant identification of proteins whose sequences have been entered into databases.  相似文献   

7.
The reagent 4-sulfophenyl isothiocyanate (SPITC) is an effective, stable, and inexpensive alternative to commercially available reagents used in the N-terminal sulfonation of peptides for enhanced postsource decay (PSD) in matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analyses. However, suppression of ionization of sulfonated peptides due to sample and matrix contaminants such as sodium can be a problem when using prestructured MALDI target sample supports, such as the Bruker Daltonics AnchorChip. We show that use of the salt-tolerant matrix 2,4,6-trihydroxyacetophenone containing diammonium citrate (THAP/DAC) as an alternative to alpha-cyanohydroxycinnamic acid (HCCA) reduces the need for extensive washing of ZipTip-bound peptides or additional on-target sample clean-up steps. Use of the THAP/DAC matrix results in selective ionization of sulfonated peptides with greater peptide coverage, as well as detection of higher mass derivatized peptides, than was observed for HCCA or THAP alone. The THAP/DAC matrix is quite tolerant of sodium contamination, with SPITC-peptides detectable in preparations containing up to 50 mM NaCl. In addition, THAP/DAC matrix was found to promote efficient PSD fragmentation of sulfonated peptides. We demonstrated the utility of using the THAP/DAC MALDI matrix for peptide sequencing with DNA polymerase beta tryptic peptide mixture, as well as tryptic peptides derived from Xiphophorus maculatus brain extract proteins previously separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE).  相似文献   

8.
Solid-phase sulfonation of tryptic peptides adsorbed to C18 muZipTips has been carried out to facilitate de novo sequencing with mass spectrometry. Peptides are reacted with the sulfonation reagent while they are still adsorbed to the solid phase. Excess reagent passes through the ZipTip to waste. Washing the products before subsequent elution from the mini-column also affords sample cleanup prior to analysis. Near quantitative N-terminal sulfonation can be achieved reliably at room temperature in only a few seconds. The method has been applied successfully to model peptides and to solution or in-gel digests of proteins. Current sequencing limits are about 100 fmol of protein. Multiplexed sample sulfonation reactions have been carried out with a manual 8-position micropipettor or using centrifugal force to reliably pass reagents and wash solutions over sample-loaded ZipTips. With multiplexing, overall preparation times have been reduced to about 1 min per sample. The solid-phase format facilitates efficient use of precious digest samples by enabling them to be recovered from the matrix-assisted laser desorption/ionization (MALDI) sample stage after mass fingerprinting, derivatized and re-analyzed by MALDI postsource decay mass spectrometry.  相似文献   

9.
Matrix-assisted laser desorption/ionisation (MALDI) mechanisms and the factors that influence the intensity of the ion signal in the mass spectrum remain imperfectly understood. In proteomics, it is often necessary to maximise the peptide response in the mass spectrum, especially for low abundant proteins or for proteolytic peptides of particular significance. We set out to determine which of the common proteolytic enzymes give rise to peptides with the best response factors under MALDI conditions. Standard proteins were enzymatically digested using four common proteases. We assessed relative response factors by coanalyzing the resulting digests. Thus, when tryptic peptides were added in equimolar quantities to their corresponding Asp-N, chymotrypsin and Glu-C digests, tryptic peptide signals were always predominant in the resulting MALDI mass spectra. Observable peaks attributable to non-tryptic peptides generally contained a terminal basic residue. It was proposed that a terminal basic residue has a disproportionate influence upon gas-phase basicity, and this hypothesis was supported by experiments with model isotopically labelled peptides. Experiments applying Cook's kinetic method showed that the peptide with a C-terminal arginine residue was more basic than the equivalent peptide with an N-terminal arginine, which was more basic than the peptide in which the arginine was mid-chain. Thus, the observation of the higher MALDI mass spectrometry response factors of tryptic peptides in comparison with peptides derived using other proteolytic enzymes corresponds with higher gas-phase basicities and may, along with other factors such as the complexity of the digest, influence the choice of enzyme in "bottom-up" proteomic experiments.  相似文献   

10.
Tryptic peptides were labeled with sulfonic acid groups at the N-termini using an improved chemistry. The derivatization was performed in common aqueous buffers on peptides adsorbed onto a ZipTip trade mark C(18), thus allowing simultaneous desalting/concentration of the sample. When only Arg-terminating peptides were considered, the procedure from adsorption onto the ZipTip until analysis by MALDI-PSD took about 10 min and several samples could be worked on in parallel. The resulting improved post-source decay (PSD) fragmentation produced spectra containing only y-ions. PSD amino acid sequencing of underivatized and derivatized synthetic peptides was compared. From the sequence information obtained from derivatized peptides isolated by ion selection from tryptic in-gel digests, a protein was correctly identified which was difficult to analyze from an unclear peptide mass fingerprint analysis. The method was also applied to the identification and localization of phosphorylated Ser and Tyr residues in native and synthetic peptides.  相似文献   

11.
The objective of the work presented in this paper was to test the concept that tryptic peptides may be used as analytical surrogates of the protein from which they were derived. Proteins in complex mixtures were digested with trypsin and classes of peptide fragments selected by affinity chromatography, lectin columns were used in this case. Affinity selected peptide mixtures were directly transferred to a high-resolution reversed-phase chromatography column and further resolved into fractions that were collected and subjected to matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The presence of specific proteins was determined by identification of signature peptides in the mass spectra. Data are also presented that suggest proteins may be quantified as their signature peptides by using isotopically labeled internal standards. Isotope ratios of peptides were determined by MALDI mass spectrometry and used to determine the concentration of a peptide relative to that of the labeled internal standard. Peptides in tryptic digests were labeled by acetylation with acetyl N-hydroxysuccinimide while internal standard peptides were labeled with the trideuteroacetylated analogue. Advantages of this approach are that (i) it is easier to separate peptides than proteins, (ii) native structure of the protein does not have to be maintained during the analysis, (iii) structural variants do not interfere and (iv) putative proteins suggested from DNA databases can be recognized by using a signature peptide probe.  相似文献   

12.
A simple mass spectrometric method to sequence a recombinant phosphoenolpyruvate carboxykinase of known structure and a novel variant of unknown structure isolated from Anaerobiospirillum succiniciproducens and Actinobacillus succinogenes 130Z, respectively, was evaluated. The proteolytic digests of the proteins were each chemically derivatized at the N-terminus by addition of a tris(trimethoxyphenyl)phosphoniumacetyl (TMPP(+)-Ac) group to produce peptides with a fixed positive charge. The derivatized digests were then partially separated by reversed-phase high-performance liquid chromatography. The fractions collected were subjected to matrix-assisted laser desorption/ionization post-source decay (MALDI/PSD) mass spectrometric analysis. The resulting spectra are sufficiently simple to allow the sequence to be read directly without extensive interpretation. This is in contrast to spectra of underivatized peptides obtained by MALDI/PSD or conventional tandem mass spectrometry, where full sequence interpretation can be challenging. Aided with a set of very simple established rules, it was shown that the sequence of TMPP(+)-Ac derivatives can be derived strictly from predictable fragment ion series. In most cases, this is sufficient to determine extensive, unambiguous, peptide sequences de novo. The partial sequence (35%) of the unknown phosphoenolpyruvate carboxykinase from Actinobacillus succinogenes 130Z was obtained entirely by the mass spectrometric method evaluated here, which provided the basis for evaluating homology and for the design of oligonucleotide probes for cloning the corresponding gene.  相似文献   

13.
Charged derivatives of peptides are useful in obtaining simpler collision-activated dissociation (CAD) mass spectra. An N-terminal charge-derivatizing reagent capable of reacting with picomole levels of peptide has been recently reported (Huang et al. Anal. Chem. 1997, 69, 137-144) in the contexts of analyses by fast atom bombardment (FAB) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Electrospray ionization (ESI) mass spectrometric investigation of these tris(trimethoxyphenylphosphonium) acetyl derivatives are described in this article, including studies by in-source fragmentation (ISF) and tandem mass spectrometry (MS/MS). Results from ISF are compared with those from MS/MS. Similarities and differences between ESI-ISF, MALDI-post-source decay (PSD), and FAB-CAD data are presented. Differences in fragmentation of these charged derivatives in the triple quadrupole and ion trap mass spectrometers also are discussed. Application of this derivatizing procedure to tryptic digests and subsequent analysis by liquid chromatography-mass spectrometry is also shown.  相似文献   

14.
Methionine residues and the oxidised forms in proteins are becoming more and more important in view of their biological function. In particular, methionine sulfoxide seems to have a regulatory function. This paper presents a fast strategy for simultaneous determination of methionine- and methionine-sulfoxide-containing peptides, involving application of methionine-specific solid-phase reagent chemistry combined with matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). In the first step, methionine-containing peptides are covalently bound as sulfonium salts to glass beads, whereas methionine-sulfoxide-containing peptides and other methionine-free peptides are not bound and are washed out. The wash solution is used for MALDI-MS analysis to determine the molecular masses of these peptides and to perform, if necessary, seamless post-source decay (PSD) fragment ion analysis. Methionine-sulfoxide-containing peptides can be identified due to the characteristic metastable loss of methanesulfenic acid from the protonated molecules. In the second step, the bound peptides are cleaved from the matrix of the beads by addition of 2-mercaptoethanol at pH 8.5-8.8. The resulting peptides, mainly methionine-containing peptides, are analysed in a straightforward manner by MALDI-MS and seamless PSD. The strategy allows the fast identification of methionine- and methionine-sulfoxide-containing peptides even in complex tryptic digests, as demonstrated here for the glycoprotein antithrombin. These results show that sometimes methionine-containing tryptic peptides are not detected due to steric restrictions (e.g. glycosylation near the methionine residue) on the binding reaction, and that, on the other hand, some methionine-free peptides can be quite strongly bound non-covalently to the matrix of the beads. The latter observation indicates the necessity of seamless PSD fragment ion analysis for unambiguous identification. Furthermore, there are indications that oxidation of some methionine residues occurred to a minor extent during the solid-phase isolation steps.  相似文献   

15.
We demonstrate that magnetic mesocellular carbon foams (Mag-MCF-C) can be effectively used for enrichment and desalting of protein digests or peptides in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The large mesocellular pores and surface area of Mag-MCF-C are likely to mainly contribute to high efficiency in enrichment and desalting of protein digests. The magnetic property of Mag-MCF-C enabled easy and simple enrichment and desalting process comprising adsorption, washing, and separation steps by using an external magnet. Following elution from Mag-MCF-C by using a matrix solution (CHCA in 70% ACN/0.1% TFA), the peptides were subjected to MALDI-MS analysis. As a result, MALDI mass spectra of peptides or tryptic protein digests were distinct even at a peptide concentration as low as 50 pM. The use of Mag-MCF-C resulted in significantly improved sequence coverage for protein identification when compared to other conventional methods. Mag-MCF-C will find applications in mass spectrometric analysis of low abundance peptides or protein digests with high sensitivity.  相似文献   

16.
Analysis of tryptic digests of proteins using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry commonly results in superior detection of arginine-containing peptides compared with lysine-containing counterparts. The effect is attributable in part to the greater stability of the arginine-containing peptide ions associated with the sequestration of the single ionizing proton on the arginine side-chain. Reaction of peptides with O-methylisourea resulted in conversion of lysine to homoarginine residues with consequent improved detection during MALDI-MS. Analysis of the underivatized tryptic digest of the yeast protein, enolase, revealed peptides representing 20% of the protein; the corresponding figure after derivatization was 46%.  相似文献   

17.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

18.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

19.
Due to its very short analysis time, its high sensitivity and ease of automation, matrix-assisted laser desorption/ionization (MALDI)-peptide mass fingerprinting has become the preferred method for identifying proteins of which the sequences are available in databases. However, many protein samples cannot be unambiguously identified by exclusively using their peptide mass fingerprints (e.g., protein mixtures, heavily posttranslationally modified proteins and small proteins). In these cases, additional sequence information is needed and one of the obvious choices when working with MALDI-mass spectrometry (MS) is to choose for post source decay (PSD) analysis on selected peptides. This can be performed on the same sample which is used for peptide mass fingerprinting. Although in this type of peptide analysis, fragmentation yields are very low and PSD spectra are often very difficult to interpret manually, we here report upon our five years of experience with the use of PSD spectra for protein identification in sequence (protein or expressed sequence tag (EST)) databases. The combination of peptide mass fingerprinting and PSD and analysis described here generally leads to unambiguous protein identification in the amount of material range generally encountered in most proteome studies.  相似文献   

20.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been used successfully to detect phosphorylation sites in proteins. Applications may be limited by the low response of phosphopeptides compared to nonphosphorylated peptides in MALDI MS. The addition of ammonium salts to the matrix/analyte solution substantially enhances the signal for phosphopeptides. In examples shown for equimolar mixtures, the phosphorylated peptide peaks become the largest peaks in the spectrum upon ammonium ion addition. This can allow for the identification of phosphopeptides in an unfractionated proteolytic digestion mixture. Sufficient numbers of protonated phosphopeptides can be generated such that they can be subjected to postsource decay analysis, in order to confirm the number of phosphate groups present. The approach works well with the common MALDI matrices such as α-cyano-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid, and with ammonium salts such as diammonium citrate and ammonium acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号