首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of Ir4(CO)12 with potassium hydroxide in methanol and/or with sodium in tetrahydrofuran leads to the carbonyliridate anions [HIr4(CO)11]?, [Ir6(CO)22]2?, [Ir8(CO)20]2?, [Ir6(CO)15]2? and [Ir(CO)4]? obtained as salts with bulky cations. From these, the tetranuclear carbonyl hydride H2Ir4(CO)11 and the hexanuclear carbonyl compound Ir6(CO)16 are also obtained.  相似文献   

2.
The controlled reductive carbonylation under 1 atm. of CO of [Ir(cyclooctene)2(μ-Cl)]2, supported on a silica surface added with an alkali carbonate such as Na2CO3 or K2CO3, can be directed toward the formation of [Ir4(CO)12], K2[Ir6(CO)15] or K2[Ir8(CO)22] by controlling (i) the nature and amount of alkali carbonate, (ii) the amount of surface water, and (iii) the temperature. [Ir4(CO)12] can also be prepared by direct controlled reductive carbonylation of IrCl3 supported on silica in the presence of well controlled amounts of Na2CO3. These efficient silica-mediated syntheses are comparable to conventional synthetic methods carried out in solution or on the MgO surface. Like in strongly basic solution or on the MgO surface, the initially formed [Ir4(CO)12], the first step of nucleation which does not require a strong basicity of the silica surface, gives in a second time sequentially [Ir8(CO)22]2? and [Ir6(CO)15]2? according to reaction conditions and basicity of the silica surface.  相似文献   

3.
The reaction of PP(NO2) with M4(CO)12 (M = Co, Rh) gives the nitrido clusters [M6N(CO)15]? in 13 and 21% yields, respectively. A high yield synthesis (77%) of [Rh6N(CO)15)]? directly from Rh6(CO)16 and PPN(NO2) is also presented. PPN(NO2) reacts with Ir4(CO)12 to give the new isocyanato cluster, [Ir4(NCO)(CO)11]? in 34% yield, while the direct synthesis of this isocyanate product occurs in 77% yield from PPN(N3) and Ir4(CO)12. Modifications of published procedures for the preparation of [N(C2H5)4]2 [Ir6(CO)15] and Ir6(CO)16 are reported that allow shorter reaction times and give higher yields. The reaction of Ir6(CO)16 with one equivalent of PPN(NO2) generates a new cluster, PPN[Ir6(CO)15(NO)], in 57% yield which is proposed to contain a bent nitrosyl ligand. An additional equivalent of PPN(NO2) gives (PPN)2[Ir6(CO)15] in 84% yield with the evolution of N2O as well as CO2.  相似文献   

4.
The reaction of LiBH(C2H5)3 with Os3(CO)12 or Ir4(CO)12 leads to the formation of spectroscopically detectable formyl complexes. In the latter case, the complex is smoothly converted to [Ir4(CO)11H]?, an expected decompositioFn complex of the corresponding polynuclear formyl complex, [Ir4(CO)11CHO]?.  相似文献   

5.
Herein, we report a theoretical and experimental study of the water‐gas shift (WGS) reaction on Ir1/FeOx single‐atom catalysts. Water dissociates to OH* on the Ir1 single atom and H* on the first‐neighbour O atom bonded with a Fe site. The adsorbed CO on Ir1 reacts with another adjacent O atom to produce CO2, yielding an oxygen vacancy (Ovac). Then, the formation of H2 becomes feasible due to migration of H from adsorbed OH* toward Ir1 and its subsequent reaction with another H*. The interaction of Ir1 and the second‐neighbouring Fe species demonstrates a new WGS pathway featured by electron transfer at the active site from Fe3+?O???Ir2+?Ovac to Fe2+?Ovac???Ir3+?O with the involvement of Ovac. The redox mechanism for WGS reaction through a dual metal active site (DMAS) is different from the conventional associative mechanism with the formation of formate or carboxyl intermediates. The proposed new reaction mechanism is corroborated by the experimental results with Ir1/FeOx for sequential production of CO2 and H2.  相似文献   

6.
The ruthenium(II) complex fac-[Ru(CO)2(H2O)3(C(O)C2H5)][CF3SO3] dissolved in aqueous tetrabutylammonium hydrogensulfate ([(CH3(CH2)3)4N][HSO4]) or sodium hydrogensulfate (NaHSO4) catalyzes the hydrocarboxylation of ethylene to propionic acid and additionally produces minor amounts of hydrocarbonylation products (diethyl ketone and propanal), under water-gas shift reaction conditions. This system is stable with a selectivity of 90% to propionic acid for high ethylene conversion. A turnover frequency of propionic acid, TOF(C2H5CO2H)/24?h?=?5?×?103 (TOF (C2H5CO2H)?=?([(moles of C2H5CO2H)/(moles of Ru)?×?rt)]?×?24?h) was achieved for Ru?=?7.45?×?10?4?mol, [(CH3(CH2)3)4N][HSO4]?=?80?g (2.36?×?10?2?mol); H2O?=?40?g (2.22?mol); CO?=?C2H4?=?20?g (total pressure?=?88?atm); T?=?150°C by a reaction time (rt) of 2.87?h. The countercation (sodium or tetrabutylammonium), the ruthenium concentration and the hydrogensulfate/H2O ratio of the medium affect the catalytic reaction. A nonlinear dependence on total ruthenium concentration was shown. The data are discussed in terms of a potential catalytic cycle. Formation of propionic acid comes from hydrolysis, and formation of diethyl ketone and propanal comes from hydrogenolysis of the Ru-ketyl and Ru-acyl complexes, respectively.  相似文献   

7.
The fluxionality of [Ir4(CO)82-CO)3L] (L = Br?, I?, SCN?, NO2?, P(4-ClC6H4)3, PPh3, P(4-MeOC6H4)3, P(4-Me2NC6H4)3), as studied by 2D-13C-NMR in solution, is due to two successive scrambling processes: the merry-go-round of six basal CO's and CO bridging to alternative faces of the Ir4 tetrahedron. The basicity of the ligand L has no significant effect on the activation parameters. The scrambling process of lowest activation energy in [Ir4(CO)72-CO)3(PMePh2)2] correspond to the two possible synchronous CO bridging about a unique face of the metal tetrahedron swapping the relative axial and radial positions of the ligands L. The disubstituted clusters [Ir4(CO)102-L? L)] with one edge-bridging ligand have a ground-state geometry with three edge-bridging CO's (L? L = bis(diphenylphosphino)methane, bis(diphenylarsino)methane, bis(diphenylphosphino)propane) or with all terminal CO's (L? L = CH3SCH2SCH3). In all cases, the fluxional process of lowest activation energy in the merry-go-round of six CO's about a unique triangular face. For the P and As donor ligands, this process is followed by the rotation of terminal CO's bonded to two Ir-atoms residing on the mirror plane of the unbridged intermediate.  相似文献   

8.
The reaction of Ir6(CO)16 with a mixture of CO, H2, and ethylene yields the [Ir6(CO)15COEt]- anion, which has been shown by X-ray diffraction to contain an octahedral iridium cluster bearing a —bonded acyl group; the arrangement of the 11 terminal and 4 edge-bridging carbonyl groups is different from that found in both the analogous rhodium complex and the parent Ir6(CO)16 carbonyl.  相似文献   

9.
The cluster [HIr5(CO)12]2- (1) was prepared by condensation of [HIr4(CO)11]- and [Ir(CO)4]- (molar ratio 1:1) in refluxing THF, with almost quantitative yields. Its solid state structure was determined by X-ray diffraction at low temperature on the salt [PPh3CH2Ph]2[HIr5(CO)12]. The metal atoms define a trigonal bipyramidal arrangement. The hydride ligand was located indirectly as a bridge between apical and equatorial metal atoms. The phosphine-substituted cluster [HIr4(CO)10PPh3]- (2) was synthetized by CO displacement on [HIr4(CO)11]-, in THF at room temperature. This reaction is selective, with no traces of polysubstitution products. In the solid state, the hydride and the triphenylphosphine are axially bound on basal iridium atoms; the terminal hydrogen atom was directly located by X-ray analysis at a Ir–H distance of 1.57(9) Å. On the contrary, two isomers are present in THF solution, and they interconvert rapidly at room temperature, as shown by1H and 31P NMR spectra.  相似文献   

10.
[Ir4(CO)11X]? anions are obtained by reaction of halide and pseudo-halide ions with Ir4(CO)12. X-ray determination of the structure of [Ir4(CO)11Br]? shows that the carbonyl arrangement differs from that of the parent Ir4(CO)12, and is similar to that known for Co4(CO)12; one terminal CO group in the basal M3(CO)9 moiety is replaced by the bromide ligand, and two of the bridging CO groups become markedly asymmetric.  相似文献   

11.
The bridging fluoroolefin ligands in the complexes [Ir2(CH3)(CO)2(μ‐olefin)(dppm)2][OTf] (olefin=tetrafluoroethylene, 1,1‐difluoroethylene; dppm=μ‐Ph2PCH2PPh2; OTf?=CF3SO3?) are susceptible to facile fluoride ion abstraction. Both fluoroolefin complexes react with trimethylsilyltriflate (Me3SiOTf) to give the corresponding fluorovinyl products by abstraction of a single fluoride ion. Although the trifluorovinyl ligand is bound to one metal, the monofluorovinyl group is bridging, bound to one metal through carbon and to the other metal through a dative bond from fluorine. Addition of two equivalents of Me3SiOTf to the tetrafluoroethylene‐bridged species gives the difluorovinylidene‐bridged product [Ir2(CH3)(OTf)(CO)2(μ‐OTf)(μ‐C?CF2)(dppm)2][OTf]. The 1,1‐difluoroethylene species is exceedingly reactive, reacting with water to give 2‐fluoropropene and [Ir2(CO)2(μ‐OH)(dppm)2][OTf] and with carbon monoxide to give [Ir2(CO)3(μ‐κ12‐C?CCH3)(dppm)2][OTf] together with two equivalents of HF. The trifluorovinyl product [Ir21‐C2F3)(OTf)(CO)2(μ‐H)(μ‐CH2)(dppm)2][OTf], obtained through single C? F bond activation of the tetrafluoroethylene‐bridged complex, reacts with H2 to form trifluoroethylene, allowing the facile replacement of one fluorine in C2F4 with hydrogen.  相似文献   

12.
Me3NO activation of the tetrairidium cluster Ir4(CO)12 (1) in presence of the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) furnishes the bpcd-substituted clusters Ir4(CO)10(bpcd) (3) and Ir4(CO)8(bpcd)2 (4) as the minor and major products, respectively. Cluster 3 has been isolated as the sole observable product from the reaction of [Ir4(CO)11Br][Et4N] (2) with bpcd in presence of AgBF4 at room temperature. Both 3 and 4 have been isolated and fully characterized in solution by spectroscopic methods. The solid-state structure of 3 reveals that the ancillary bpcd ligand is bound to a single iridium center, with chelating and bridging bpcd ligands found in the X-ray structure of cluster 4. Cluster 4 is unstable at room temperature and slowly loses CO to afford the hydride-bridged cluster HIr4(CO)4(μ-CO)3(bpcd)[μ-PhP(C6H4)CC(PPh2)C(O)CH2C(O)] (5). Cluster 5 has been fully characterized in solution by IR and NMR spectroscopies, and the C–H bond activation attendant in the ortho metalation step is shown to occur regioselectively at one of the aryl groups associated with the bridging bpcd ligand. The redox properties of clusters 35 have been explored and the electrochemical behavior discussed with respect to extended Hückel MO calculations and related diphosphine-substituted cluster compounds prepared by our groups.  相似文献   

13.
The monosubstituted [Ir4(CO)11L] clusters (L = P(OPh)3, 1 ; L = P(OMe)3, 2 ; L = P(OCH2)3CEt, 3 ) were obtained in good yields by the reaction of [Ir4(CO)11 I ]? with the corresponding phosphite. In the solid state, cluster 3 has a Cs geometry with all terminal ligands as shown by an X-ray analysis. Three isomers are present in solution: one with terminal ligands ( A ) and two with three edge-bridging CO's and with L in axial ( B ) or radial ( C ) position (see Scheme). The thermodynamic and kinetic parameters of isomerisations B ? A and A ? C were determined by simulation of the variable-temperature 31P-NMR spectra. The three isomers correspond to three minima on the kinetic pathway of CO scrambling, whose relative energies vary independently within a small range (1–9 kJ mol?1 at 298 K). At low temperature, isomer C is always the least stable and is not observed for 1 which bears the most bulky phosphite ligand. The isomerisations are due to two intramolecular merry-go-rounds of CO groups about two unequivalent faces of the unbridged species A .  相似文献   

14.
The synthesis of [Ir2Rh2(CO)12] ( 1 ) by the literature method gives a mixture 1 /[IrRh3(CO)12] which cannot be separated using chromatography. The reaction of [Ir(CO)4]? with 1 mol-equiv. of [Rh(CO)2(THF)2]+ in THF gives pure 1 in 61% yield. Crystals of 1 are highly disordered, unlike those of its derivative [Ir2Rh2(CO)52-CO)3(norbornadiene)2] which were analysed using X-ray diffraction. The ground-state geometry of 1 in solution has three edge-bridging CO's on the basal IrRh2 face of the metal tetrahedron. Time averaging of CO's takes place above 230 K. The CO site exchange of lowest activation energy is due to one synchronous change of basal face, as shown by 2D- and VT-13C-NMR. Substitution of CO by X? in 1 takes place at a Rh-atom giving [Ir2Rh2(CO)82-CO)3X]? (X = Br, I). Substitution by bidentate ligands gives [Ir2Rh2(CO)72-CO)34-L)] (L = norbornadiene, cycloocta-1,5-diene) where the ligand L is chelating a Rh-atom of the basal IrRh2 face. Carbonyl substitution by tridentate ligands gives [Ir2Rh2(CO)62-CO)33-L)] (L = 1,3,5-trithiane, tripod) with L capping the triangular basal face of the metal tetrahedron. Carbonyl scrambling is also observed in these substituted derivatives of 1 and is mainly due to the rotation of three terminal CO's about a local C3 axis on the apical Ir-atom.  相似文献   

15.
Promotional effects due to PtO2, PdO, Pd/C and Pd/CaCO3 on the metal dimer or cluster (e.g. [(η5-C5H5)Fe(CO)2]2, Ru3(CO)12, Ir4(CO)12) catalysed reaction between metal carbonyls and isonitriles are shown to lead to enhanced reaction rates for the metal carbonyl substitution reaction.  相似文献   

16.
The lowest energy Ir4(CO)12 structure is predicted by density functional theory to be a triply bridged structure analogous to the experimental structures for its lighter congeners M4(CO)9(??-CO)3 (M=Co, Rh). The experimental unbridged structure for Ir4(CO)12 is predicted to lie ~6?kcal/mol above the triply bridged structure. However, the MP2 method predicts the unbridged structure for Ir4(CO)12 to be the lowest energy structure by ~9?kcal/mol over the triply bridged structure. The lowest energy Ir4(CO)11 structure is predicted to be a doubly bridged structure with a central tetrahedral Ir4 unit. A higher energy Ir4(CO)11 structure at ~18?kcal/mol above this global minimum is found with an unusual ??4-CO group bridging all four atoms of a central Ir4 butterfly. This Ir4(CO)8(??-CO)2(??4-CO) structure is analogous to the lowest energy Co4(CO)11 structure found in a previous theoretical study, as well as Rh4(CO)4(??-CO)4(PBu 3 t )2(PtPBu 3 t )(??4-CO), which has been synthesized by Adams and coworkers. The Ir4 tetrahedron is remarkably persistent in the more highly unsaturated Ir4(CO) n (n?=?10, 9, 8) structures with relatively little changes in the Ir?CIr distances as carbonyl groups are removed. This appears to be related to the spherical aromaticity in the tetrahedral Ir4 structures.  相似文献   

17.
The two title compounds, [Mo2Ir2(C6H7)2(CO)10] and [Mo2Ir2(C9H13)2(CO)10]·0.5CH2Cl2, respectively, or collectively [Mo2Ir2(μ‐CO)3(CO)75‐C5H5?nMen)2] (n = 1 or 4), have a pseudo‐tetrahedral Mo2Ir2 core geometry, an η5‐­C5H5?nMen group ligating each Mo atom, bridging carbonyls spanning the edges of an MoIr2 face and seven terminally bound carbonyl groups.  相似文献   

18.
The heat of formation of benzophenone oxide, Ph2CO2, was measured using photoacoustic calorimetry. The enthalpy of the reaction Ph2CN2 + O2 → Ph2CO2 + N2 was found to be ?48.0 ±0.8 kcal mol?1 and ΔHf(Ph2CN2) was determined by measuring the reaction enthalpy for Ph2CN2 + EtOH → Ph2CHOEt + N2 (?53.6 ±1.0 kcal mol?1). Taking ΔHf(PhCHOEt) = ?10.6 kcal mol?1 led to ΔHf(Ph2CN2) = 99.2 ± 1.5 kcal mol?1 and hence to ΔHf(Ph2CO2) = 51.1 ± 2.0 kcal mol?1. The results imply that the self-reaction of benzophenone oxide i.e., 2Ph2CO2 → 2Ph2CO + O2 is exothermic by ?76.0 ±4.0 kcal mol?1.  相似文献   

19.
The reaction of Ir2(CO)6(PPh3)2 with p-substituted aryldiazoniurn salts gives the o-metalated complexes [Ir(CO)2(NHNC6H3R) (PPh3)]22+ 2BF4?. These react with KOH in ethanol to give the deprotonated derivatives, and with halogens to give halogenated derivatives by cleavage of the carbonmetal bond.  相似文献   

20.
1 The anions [Ir4(CO)11(COOR)- (R  Me, Et) have been prepared by reacting Ir4(CO)12 with alkali alkoxides in dry alcohol and under an atmosphere of carbon monoxide. The reaction of [Ir4(CO)11(COOMe)]- with primary and secondary alcohols (EtOH, PriOH) gives rise to specific alcoholysis. The anions [Ir4(CO)11(COOR)- react with acids in THF solution to give quantitatively Ir4(CO)12. The chemical, spectroscopic and crystallographic characterization of the tetranuclear anions are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号