首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
H2Ru33-S)(CO)9 is deprotonated by K[HBBus3] to give cluster anions which react with [O{Au(PPh3)}3]+ or with AuCl(PPh3)/T1+ to give HRu3Au(μ3-S)(CO)9(PPh3) (1) and Ru3Au23-S)(CO)9(PPh3)2 (3). A similar sequence with HRu33-SBut)(CO)9 leads to Ru3Au(μ3-SBut)(CO)9(PPh3) (2) as the main product although some 1 also forms, indicating SC cleavage competes with deprotonation of HRu33-SBut)(CO)9 by [HBBus3]?. The X-ray crystal structures of 1, 2 and 3 are described; (1) and (2) have “butterfly” AuRu3 cores with markedly different hinge angles of 119 and 148° respectively, while 3 has a trigonal-bipyramidal Au2Ru3 skeleton. All three clusters have the sulphur atom symmetrically bridging the Ru3 triangular face.  相似文献   

2.
The reaction between AuMe(PPh3) and Ru3(μ-H)33-CBr)(CO)9 (1) affords the novel heptanuclear cluster Au4Ru33-CMe)(Br)(CO)9(PPh3)3 (2), containing an Au/Ru3/Au trigonal pyramidal cluster face-capped by two Au(PPh3) groups and a CMe ligand, together with Au2Ru3(μ-H)(μ3-CMe)(CO)9(PPh3)2 (3), formed by isolobal replacement of two of the three μ-H atoms in 1 by Au(PPh3) groups. The latter co-crystallises with the analogous μ3-CH complex, as also shown spectroscopically.  相似文献   

3.
Treatment of Ru3(CO)12 with Ph3PS affords the compounds [Ru33-S)2(CO)9 − n(PPh3)n] (n = 1 (1a), 2 (2a)) and [Ru33-S)(μ3-CO)(CO)7(PPh3)2] (3a) as the major products. Single crystal X-ray diffraction studies of [Ru33-S)2(CO)8(PPh3)] and [Ru33-S)(μ3-CO)(CO)7(PPh3)2] show these two classes of compounds to contain square pyramidal Ru3S2 and trigonal pyramidal Ru3S metal cores, respectively, with the latter being isostructural to the analogous selenide cluster compound. The clusters [Ru33-E)2(CO)9 − n(PPh3)n] (E = S, n = 1; E = Se, n = 2) readily undergo ligand displacement reactions with PPh3 to afford the compounds [Ru33-E)2(CO)6(PPh3)3] (E = S, 5a; E = Se 5b). The mixed chalcogenide cluster, [Ru33-S)(μ3-Se)(CO)7(PPh3)2] (6), was prepared from the reaction of [Ru33-S)(μ3-CO)(CO)7(PPh3)2] and SePPh3. The optical limiting properties of the complexes 1a,b, 2a,b, 5a,b have been measured by the Z-scan technique employing 40 ns pulses at 523 nm; power limiting was observed for all clusters under our experimental conditions.  相似文献   

4.
The title compound can be prepared in good yield by heating either [Ru4(μ-H)4(CO)12] or [Au2Ru43-H)2(CO)12(PPh3)2] with [AuMe(PPh3)] in toluene. The related compound [Au3Ru43-H)(μ-dppm)(CO)12(PPh3)] has also been prepared. Both trigoldtetraruthenium clusters undergo dynamic behaviour in solution, involving intramolecular rearrangement of the metal core, as revealed by variable temperature NMR studies. The crystal structure of [Au3Ru43-H)(CO)12(PPh3)3] has been established by an X-ray diffraction study. The metal atom core comprises a trigonal bipyramidal AuRu4 unit with two AuRu2 faces capped by gold atoms.  相似文献   

5.
Reaction of Ru3(μ-dppm)(CO)10 [dppm = bis(diphenylphosphino)methane] with one equivalent of dppa [dppa = bis(diphenylphosphino)acetylene] afforded Ru3(μ-dppm)(CO)91-dppa) which possesses a monodentate dppa ligand,an X-ray structural study revealing that all phosphorus donor atoms are arranged in equatorial coordination sites with respect to the triruthenium cluster plane.Reaction of Ru3(CO)9(NCMe)3 with excess dppa afforded fair yields of Ru3(CO)91-dppa)3,which possesses three monodentate dppa ligands.Reaction of three equivalents of Ru3(μ-dppm)(CO)91-dppa) with Ru3(CO)9(NCMe)3 or reaction of Ru3(CO)91-dppa)3 with excess Ru3(μ-dppm)(CO)10 afforded low yields of the dodecanuclear first-generation dendrimer Ru3(CO)9{PPh2C2PPh2Ru3(μ-dppm)(CO)9}3.Reaction of WIr3(μ-CO)3(CO)8(η-C5Me5) with excess Ru3(μ-dppm)(CO)91-dppa) afforded fair yields of the decanuclear dppa-bridged tri-cluster WIr3(CO)9{PPh2C2PPh2Ru3(μ-dppm)(CO)9}2(η-C5Me5).  相似文献   

6.
The reactions of [Ru3(μ-H)(μ-ampy)(CO)9] (1) (Hampy = 2-amino-6-methylpyridine) with one or two equivalents of PPh2H lead to the complexes [Ru3(μ-H)(μ3-ampy)(CO)8(PPh2H)] (2) or [Ru3(μ-H)(μ3-ampy)(CO)7(PPh2H)2] (3), in which the PPh2H ligands are cis to the bridging NH fragment and cis to the hydride. Complex 2 can be transformed in refluxing THF into the phosphido-bridged derivative [Ru33-ampy)(μ-PPh2)(μ-CO)2(CO)6] (4), which contains the PPh2 ligand spanning one of the two RuRu edges unbridged by the amido moiety, and presents an extremely high 31P chemical shift of 386.9 ppm. Under similar conditions, complex 3 gives a mixture of two isomers of [Ru3(μ-H)(μ3-ampy)(μ-PPh2)2(CO)6] in a 5:1 ratio; the major product (5) has a plane of symmetry, whereas the minor one (6) is asymmetric.  相似文献   

7.
A chiral carbohydrate ligand 3,4,6-tri-O-benzyl-d-glucal (L) reacts with the cluster triruthenium dodecacarbonyl Ru3(CO)12 giving a novel chiral cluster Ru3(μ-H)2(CO)9(L-2H) (I) that shows fluxional behavior at room temperature. The reaction of Ru3(μ-H)2(CO)9(L-2H) (I) with triphenylphosphine and diphenylphosphinoethane (dppe) gives two new clusters Ru3(μ-H)2(CO)7(L-2H)(PPh3)2 (II) and Ru3(μ-H)2(CO)7(L-2H)(dppe) (III). The new compounds I, II and III have been characterized by a combination of elemental analysis, mass spectrometry, infrared and variable temperature NMR spectroscopy.  相似文献   

8.
Deprotonation (K[HBBu3s]) of HRu33-C2But)(CO)9, followed by reaction of the anion with [O{Au(PPh3)}3][BF4], afforded the known complex Ru3Au(μ3-C2But)(CO)9 (9%), the vinylidene cluster Ru3Au23-CCHBut)(CO)9(PPh3)2 (16%) and the hexanuclear Ru3Au3(C2But)(CO)8(PPh3)3 (3%). The X-ray structure of the pentanuclear complex shows an asymmetric trigonal-bipyramidal Ru3Au2 core (Ru, Au at the apices) with the Ru3 face bridged by a t-butylvinylidene ligand, being σ-bonded to Ru(1) and Ru(3), and η2-coordinated to Ru(2). Crystals are monoclinic, space group P21/n with a 19.121(3), b 13.109(3), c 23.649(4) Å, β 106.76(2)° and Z = 4. The structure was solved using 4405 observed diffractometer data, and refined to R 0.044, Rw 0.047.  相似文献   

9.
Hydrogenation (20 atm, 80°C, 2 h) of trinuclear Ru3(CO)12-nLn (L= tertiary phosphine or phosphite; n = 1–3) resulted in aggregation to give mixtures of H4Ru4(CO)12-n(L)n (n = 0–4), but Ru3(CO)10(L-L) (L-L=dppm, dpam) gave Ru3(μ-H)(μ3-PhECH2EPh2)(CO)9 (E = P, As, respectively) and Ru3(μ-H)23-PPh)(CO)8(PMePh2), and Ru3(μ-H)(μ3-SBut)(CO)9 gave Ru3(μ-H)23-S)(CO)9 by cleavage of PC, AsC, or SC bonds. Both types of reaction occurred with Ru3(CO)10(dppe) and [Ru3(CO)11]2(μ-dppe).  相似文献   

10.
Reaction of cis-[PtCl2(AsPh3)2] with excess sodium sulfide in benzene gave the triphenylarsine analogue of the well-known metalloligand [Pt2(μ-S)2(PPh3)4] as an orange solid.The compound was characterised by detailed mass spectrometry studies, and by conversion to various alkylated and metallated derivatives.The sulfide ligands in [Pt2(μ-S)2(AsPh3)4] are less basic than the triphenylphosphine analogue, and the complex gives a relatively weak [M+H]+ ion in the positive-ion electrospray (ESI) mass spectrum, compared with the phosphine analogue.Methylation of an equimolar mixture of [Pt2(μ-S)2(PPh3)4] and [Pt2(μ-S)2(AsPh3)4] with MeI gave the species [Pt2(μ-S)(μ-SMe)(AsPh3)4]+ and [Pt2(μ-SMe)2(PPh3)3I]+, indicating a reduced tendency for the sulfide of [Pt2(μ-S)(μ-SMe)(AsPh3)4]+ to undergo alkylation.The lability of the arsine ligands is confirmed by the reaction of an equimolar mixture of [Pt2(μ-S)2(PPh3)4] and [Pt2(μ-S)2(AsPh3)4] with n-butyl chloride, giving [Pt2(μ-S)(μ-SBu)(EPh3)4]+ (E = P, As), which with Me2SO4 gave a mixture of [Pt2(μ-SMe)(μ-SBu)(PPh3)4]2+ and [Pt2(μ-SMe)(μ-SBu)(AsPh3)3Cl]+.Reactivity towards 1,2-dichloroethane follows a similar pattern.The formation and ESI MS detection of mixed phosphine-arsine {Pt2S2} species of the type[Pt2(μ-S)2(AsPh3)n(PPh3)4−n] is also discussed. Coordination chemistry of [Pt2(μ-S)2(AsPh3)4] towards a range of metal-chloride substrates, forming sulfide-bridged trinuclear aggregates, has also been probed using ESI MS, and found to be similar to the phosphine analogue. The X-ray crystal structure of [Pt2(μ-S)2(AsPh3)4Pt(cod)](PF6)2 (cod = 1,5-cyclo-octadiene) has been determined for comparison with the (previously reported) triphenylphosphine analogue. ESI MS is a powerful tool in exploring the chemistry of this system; in some cases the derivatising agent p-bromobenzyl bromide is used to convert sparingly soluble and/or poorly ionising {Pt2S2} species into soluble, charged derivatives for MS analysis.  相似文献   

11.
Reactions between [H3Ru4(CO)12]? and [{Au(PPh3)}3O]+ afford H3Ru4-Au(CO)12(PPh3), H2Ru4Au2(CO)12(PPh3)2 and HRu4Au3(CO)12(PPh3)3. The X-ray structure of the latter shows that it has the unusual bicapped trigonal bipyramidal metal core, in which two Ru2Au faces of the Ru4Au fragment are capped by the other two Au atoms. The central Au atom is asymmetrically attached to the Ru3 face as a result of the interaction of a phenyl ring of the PPh3 ligand with two of the CO groups. Metal-metal separations are: two Au-Au, 2.837(1) Å; Ru-Ru, six between 2.805–3.004(3) Å; Au-Ru, seven between 2.821–3.007(2) Å. HRu4Au3(CO)12(PPh3)3 is monoclinic, space group P21/n, with a 18.754(3), b 18.459(5), c 22.317(4) Å, β 113.06(2)°; 2852 data [I > 2.5σ(I)] were refined to R, Rw 0.038, 0.038.  相似文献   

12.
The complexes [Ru3(CO)7(PPh2)2(C6H4)] and [Ru2(CO)5(PPh3)(μ-PPh2)(μ-OCPh)] were obtained by pyrolysis of [Ru3(CO)9(PPh3)3] and tested as catalysts for the hydrogenation of cyclohexene and 2-cyclohexen-1-one. The structure of [Ru2(CO)5(PPh3)(μ-PPh2)(μ-OCPh)] was established by a single crystal X-ray diffraction study.  相似文献   

13.
The cluster HRu33-C12H15)(CO)9 is rapidly deprotonated by K[HBBu3sec] in tetrahydrofuran, generating the anion [Ru33-C12H15)(CO)9]? in high yield. Reaction between this anion and [O{Au(PPh3)}3][BF4] gives Ru3Au33-C12H15)(CO)8(PPh3)3 (2) as the main product, shown by an X-ray study to contain a capped trigonal-bipyramidal Ru3Au3 core in which the C12H15 ligand is bonded in the μ3-2η13 fashion to the Ru3 face. An alternative formulation involving the cyclo-Au3(PPh3)3 moiety acting as a three-electron donor to the Ru3 cluster is discussed. Crystals of 2 are monoclinic, space group P21/c, a 13.574(1), b 40.634(4), c 14.617(2) Å, β 92.58(1)°, Z = 4; 3233 data with I > 3σ(I) were refined to R = 0.078, Rw = 0.084.  相似文献   

14.
The new complex Ru3(CO)9(PPh2H)3 (I) was prepared by the direct thermal reaction of Ru3(CO)12 with PPh2 H and was spectroscopically characterized. Irradiation of I with λ ≥ 300 nm leads to the formation of Ru2(μ-PPh2)2(CO)6 (II) and three new phosphido-bridged complexes, Ru3(μ-H)2(μ-PPh2)2(CO)8 (III), Ru3(μ-H)2(μ-PPh2)2(CO)7(PPh2H) (IV) and Ru3(μ-H)(μ-PPh2)3(CO)7 (V). These complexes have been characterized spectroscopically and Ru3 (μ-H)(μ-PPh2)3(CO)7 by a complete single crystal X-ray structure determination. It crystallizes in the space group P21/n with a 20.256(3), b 22.418(6), c 20.433(5) Å, β 112.64(2)°, V 8564(4) Å3, and Z = 8. Diffraction data were collected on a Syntex P21 automated diffractometer using graphite-monochromatized Mo-Kα radiation, and the structure was refined to RF 4.76% and RwF 5.25% for the 8,847 independent reflections with F0 > 6σ(F0). The structure consists of a triangular array of Ru atoms with seven terminal carbonyl ligands, three bridging diphenylphosphido ligands which bridge each of the RuRu bonds, and the hydride ligand which bridges one RuRu bond. Complex IV was also shown to give V upon photolysis and is thus an intermediate in the photoinduced formation of V from I.  相似文献   

15.
Complexes containing C4 ligands attached to one or two AuRu3 clusters by conventional σ, 2π interactions have been obtained from reactions between (R3P)AuC≡CC≡CAu(PR3) (R = Ph, tol) or Au(C≡CC≡CH){P(tol)3} and either Ru3(CO)12, Ru3(CO)10(NCMe)2 or Ru3(μ-dppm)(CO)10. The X-ray determined structures of {(R3P)AuRu3(CO)9}23232-C2C2) [R = Ph (1) (three solvates), tol (2)], AuRu332-C2C≡CAu(PPh3)}(CO)9(PPh3) (3) and {(Ph3P)AuRu3(μ-dppm)(CO)7} (μ3232-C2C2){Ru3(μ-H)(μ-dppm)(CO)7} (4) are reported.  相似文献   

16.
The reactivity of [Pt2(μ-S)2(PPh3)4] towards [RuCl26-arene)]2 (arene=C6H6, C6Me6, p-MeC6H4Pri=p-cymene), [OsCl26-p-cymene)]2 and [MCl25-C5Me5)]2 (M=Rh, Ir) have been probed using electrospray ionisation mass spectrometry. In all cases, dicationic products of the type [Pt2(μ-S)2(PPh3)4ML]2+ (L=π-hydrocarbon ligand) are observed, and a number of complexes have been prepared on the synthetic scale, isolated as their BPh4 or PF6 salts, and fully characterised. A single-crystal X-ray structure determination on the Ru p-cymene derivative confirms the presence of a pseudo-five-coordinate Ru centre. This resists addition of small donor ligands such as CO and pyridine. The reaction of [Pt2(μ-S)2(PPh3)4] with RuClCp(PPh3)2 (Cp=η5-C5H5) gives [Pt2(μ-S)2(PPh3)4RuCp]+. In addition, the reaction of [Pt2(μ-S)2(PPh3)4] with the related carbonyl complex [RuCl2(CO)3]2, monitored by electrospray mass spectrometry, gives [Pt2(μ-S)2(PPh3)4Ru(CO)3Cl]+.  相似文献   

17.
Reactions of Ru3(CO)12 with diphosphazane monoselenides Ph2PN(R)P(Se)Ph2 [R = (S)-∗CHMePh (L4), R = CHMe2 (L5)] yield mainly the selenium bicapped tetraruthenium clusters [Ru44-Se)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] (1, 3). The selenium monocapped triruthenium cluster [Ru33-Se)(μsb-CO)(CO)72-P,P-Ph2PN((S)-∗CHMePh)PPh2}] (2) is obtained only in the case of L4. An analogous reaction of the diphosphazane monosulfide (PhO)2PN(Me)P(S)(OPh)2 (L6) that bears a strong π-acceptor phosphorus shows a different reactivity pattern to yield the triruthenium clusters, [Ru33-S)(μ3-CO)(CO)7{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (9) (single sulfur transfer product) and [Ru33-S)2(CO)52-P,P-(PhO)2PN(Me)P(OPh)2}{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (10) (double sulfur transfer product). The reactions of diphosphazane dichalcogenides with Ru3(CO)12 yield the chalcogen bicapped tetraruthenium clusters [Ru44-E)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] [R = (S)-∗CHMePh, E = S (6); R = CHMe2, E = S (7); R = CHMe2, E = Se (3)]. Such a tetraruthenium cluster [Ru44-S)2(μ- CO)(CO)8{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (11) is also obtained in small quantities during crystallization of cluster 9. The dynamic behavior of cluster 10 in solution is probed by NMR studies. The structural data for clusters 7, 9, 10 and 11 are compared and discussed.  相似文献   

18.
Treatment of [Ru3(CO)10(μ-dppm)] (4) [dppm = bis(diphenylphosphido)methane] with tetramethylthiourea at 66 °C gave the previously reported dihydrido triruthenium cluster [Ru3(μ-H)23-S)(CO)7(μ-dppm)] (5) and the new compounds [Ru33-S)2(CO)7(μ-dppm)] (6), [Ru33-S)(CO)73-CO)(μ-dppm)] (7) and [Ru33-S){η1-C(NMe2)2}(CO)63-CO)(μ-dppm)] (8) in 6%, 10%, 32% and 9% yields, respectively. Treatment of 4 with thiourea at the same temperature gave 5 and 7 in 30% and 10% yields, respectively. Compound 7 reacts further with tetramethylthiourea at 66 °C to yield 6 (30%) and a new compound [Ru33-S)21-C(NMe2)2}(CO)6(μ-dppm)] (9) (8%). Thermolysis of 8 in refluxing THF yields 7 in 55% yield. The reaction of 4 with selenium at 66 °C yields the new compounds [Ru33-Se)(CO)73-CO)(μ-dppm)] (10) and [Ru33-Se)(μ33-PhPCH2PPh(C6H4)}(CO)6(μ-CO)] (11) and the known compounds [Ru3(μ-H)23-Se)(CO)7(μ-dppm)] (12) and [Ru43-Se)4(CO)10(μ-dppm)] (13) in 29%, 5%, 2% and 5% yields, respectively. Treatment of 10 with tetramethylthiourea at 66 °C gives the mixed sulfur-selenium compounds [Ru33-S)(μ3-Se)(CO)7(μ-dppm)] (14) and [Ru33-S)(μ3-Se){η1-C(NMe2)2}(CO)6(μ-dppm)] (15) in 38% and 10% yields, respectively. The single-crystal XRD structures of 6, 7, 8, 10, 14 and 15 are reported.  相似文献   

19.
The complexes [Ru2(CO)2(μ-CO)(μ-CMe)(η-C5H5)2]? and [Ru2CO2(μ-CO)(μ-CCH2)(η-C5H5)2] react together to give [{Ru2CO)3(η-C5H5)2}2(μ-CMeCHCH)]+ and [{Ru3(CO)3(η-C5H5)3}(μ-CCH2CHC){Ru2(CO)3(η-C5H5)2}], each characterised by X-ray diffraction. The former results from ethylidyne-vinylidene linking followed by an alkylidyne to vinyl rearrangement.  相似文献   

20.
《Polyhedron》2001,20(15-16):2011-2018
The reaction behavior of the 48e-clusters [Ru3(CO)8(μ-H)2(μ-PR2)2] (R=But, 1a; R=Cy, 1b) towards phosphine ligands has been studied. Whereas 1a reacts spontaneously with many phosphines at room temperature, a lack of reactivity for 1b under similar conditions is observed. Thus 1a reacts with dppm (Ph2PCH2PPh2) to the known 46e-cluster [Ru3(μ-CO)(CO)43-H)(μ-H)(μ-PBut2)2(μ-dppm)] (2a), and the reaction of 1a with dppe (Ph2PC2H4PPh2) yields analogously [Ru3(μ-CO)(CO)43-H)(μ-H)(μ-PBut2)2(μ-dppe)] (3). Reactions of 1a with dmpm (Me2PCH2PMe2), dmpe (Me2PC2H4PMe2) and PBun3, respectively, gave in each case a mixture of products which could not be characterized. Contrary to the reaction behavior at room temperature, 1b reacts with phosphines in THF under reflux yielding the novel complexes [Ru3(CO)6(μ-H)2(μ-PCy2)2L2] (L=Cy2PH, 4a; L=But2PH, 4b; L=Ph2PH, 4c; L=P(OEt)3, 4d). 4a is also obtained directly by the reaction of [Ru3(CO)12] with an excess of Cy2PH. The molecular structure of 4a has been determined by a single-crystal X-ray analysis. Moreover, the thermolysis of 1a in octane affords [Ru3(CO)8(μ-H)23-PBut)(But2PH)] (6) as the main product, and the thermolysis of [Ru3(CO)9(But2PH)(μ-dppm)] (7) yields 2a to a considerable extent. Treatment of 1a with carbon tetrachloride leads to [Ru3(CO)7(μ-H)(μ-PBut2)2(μ-Cl)] (8) as the main product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号