首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A behavioral response paradigm was used to measure masked underwater hearing thresholds in five bottlenose dolphins and two white whales before and immediately after exposure to intense 1-s tones at 0.4, 3, 10, 20, and 75 kHz. The resulting levels of fatiguing stimuli necessary to induce 6 dB or larger masked temporary threshold shifts (MTTSs) were generally between 192 and 201 dB re: 1 microPa. The exceptions occurred at 75 kHz, where one dolphin exhibited an MTTS after exposure at 182 dB re: 1 microPa and the other dolphin did not show any shift after exposure to maximum levels of 193 dB re: 1 microPa, and at 0.4 kHz, where no subjects exhibited shifts at levels up to 193 dB re: 1 microPa. The shifts occurred most often at frequencies above the fatiguing stimulus. Dolphins began to exhibit altered behavior at levels of 178-193 dB re: 1 microPa and above; white whales displayed altered behavior at 180-196 dB re: 1 microPa and above. At the conclusion of the study all thresholds were at baseline values. These data confirm that cetaceans are susceptible to temporary threshold shifts (TTS) and that small levels of TTS may be fully recovered.  相似文献   

2.
A behavioral response paradigm was used to measure masked underwater hearing thresholds in a bottlenose dolphin (Tursiops truncatus) and a white whale (Delphinapterus leucas) before and after exposure to single underwater impulsive sounds produced from a seismic watergun. Pre- and postexposure thresholds were compared to determine if a temporary shift in masked hearing thresholds (MTTS), defined as a 6-dB or larger increase in postexposure thresholds, occurred. Hearing thresholds were measured at 0.4, 4, and 30 kHz. MTTSs of 7 and 6 dB were observed in the white whale at 0.4 and 30 kHz, respectively, approximately 2 min following exposure to single impulses with peak pressures of 160 kPa, peak-to-peak pressures of 226 dB re 1 microPa, and total energy fluxes of 186 dB re 1 microPa2 x s. Thresholds returned to within 2 dB of the preexposure value approximately 4 min after exposure. No MTTS was observed in the dolphin at the highest exposure conditions: 207 kPa peak pressure, 228 dB re 1 microPa peak-to-peak pressure, and 188 dB re 1 microPa2 x s total energy flux.  相似文献   

3.
Temporary threshold shift (TTS) was measured in a bottlenose dolphin exposed to a sequence of four 3-kHz tones with durations of 16 s and sound pressure levels (SPLs) of 192 dB re 1 μPa. The tones were separated by 224 s of silence, resulting in duty cycle of approximately 7%. The resulting growth and recovery of TTS were compared to experimentally measured TTS in the same subject exposed to single, continuous tones with similar SPLs. The data confirm the potential for accumulation of TTS across multiple exposures and for recovery of hearing during the quiet intervals between exposures. The degree to which various models could predict the growth of TTS across multiple exposures was also examined.  相似文献   

4.
Auditory filter shapes were estimated in two bottlenose dolphins (Tursiops truncatus) and one white whale (Delphinapterus leucas) using a behavioral response paradigm and notched noise. Masked thresholds were measured at 20 and 30 kHz. Masking noise was centered at the test tone and had a bandwidth of 1.5 times the tone frequency. Half-notch width to center frequency ratios were 0, 0.125, 0.25, 0.375, and 0.5. Noise spectral density levels were 90 and 105 dB re: 1 microPa2/Hz. Filter shapes were approximated using a roex(p,r) function; the parameters p and r were found by fitting the integral of the roex(p,r) function to the measured threshold data. Mean equivalent rectangular bandwidths (ERBs) calculated from the filter shapes were 11.8 and 17.1% of the center frequency at 20 and 30 kHz, respectively, for the dolphins and 9.1 and 15.3% of the center frequency at 20 and 30 kHz, respectively, for the white whale. Filter shapes were broader at 30 kHz and 105 dB re: 1 microPa2/Hz masking noise. The results are in general agreement with previous estimates of ERBs in Tursiops obtained with a behavioral response paradigm.  相似文献   

5.
Measurements of temporary threshold shift (TTS) in marine mammals have become important components in developing safe exposure guidelines for animals exposed to intense human-generated underwater noise; however, existing marine mammal TTS data are somewhat limited in that they have typically induced small amounts of TTS. This paper presents experimental data for the growth and recovery of larger amounts of TTS (up to 23 dB) in two bottlenose dolphins (Tursiops truncatus). Exposures consisted of 3-kHz tones with durations from 4 to 128 s and sound pressure levels from 100 to 200 dB re 1 μPa. The resulting TTS data were combined with existing data from two additional dolphins to develop mathematical models for the growth and recovery of TTS. TTS growth was modeled as the product of functions of exposure duration and sound pressure level. TTS recovery was modeled using a double exponential function of the TTS at 4-min post-exposure and the recovery time.  相似文献   

6.
An earlier study examined the effects of exposure to seismic air guns on the hearing of three species of fish from the Mackenzie River Delta in Northern Canada [Popper et al. (2005). "Effects of exposure to seismic airgun use on hearing of three fish species," J. Acoust. Soc. Am. 117, 3958-3971]. The sound pressure levels to which the fishes were exposed were a mean received level of 205-209 dB re 1 microPa (peak) per shot and an approximate received mean SEL of 176-180 dB re 1 microPa(2) s per shot. In this report, the same animals were examined to determine whether there were effects on the sensory cells of the inner ear as a result of the seismic exposure. No damage was found to the ears of the fishes exposed to seismic sounds despite the fact that two of the species, adult northern pike and lake chub, had shown a temporary threshold shift in hearing studies.  相似文献   

7.
Caged fish were exposed to sound from mid-frequency active (MFA) transducers in a 5 × 5 planar array which simulated MFA sounds at received sound pressure levels of 210 dB SPL(re 1 μPa). The exposure sound consisted of a 2 s frequency sweep from 2.8 to 3.8 kHz followed by a 1 s tone at 3.3 kHz. The sound sequence was repeated every 25 s for five repetitions resulting in a cumulative sound exposure level (SEL(cum)) of 220 dB re 1 μPa(2) s. The cumulative exposure level did not affect the hearing sensitivity of rainbow trout, a species whose hearing range is lower than the frequencies in the presented MFA sound. In contrast, one cohort of channel catfish showed a statistically significant temporary threshold shift of 4-6 dB at 2300 Hz, but not at lower tested frequencies, whereas a second cohort showed no change. It is likely that this threshold shift resulted from the frequency spectrum of the MFA sound overlapping with the upper end of the hearing frequency range of the channel catfish. The observed threshold shifts in channel catfish recovered within 24 h. There was no mortality associated with the MFA sound exposure used in this test.  相似文献   

8.
In this report we present the first behavioral measurements of auditory sensitivity for Pollimyrus adspersus. Pollimyrus is an electric fish (Mormyridae) that uses both electric and acoustic signals for communication. Tone detection was assessed from the fish's electric organ discharge rate. Suprathreshold tones usually evoked an accelerated rate in naive animals. This response (rate modulation > or =25%) was maintained in a classical conditioning paradigm by presenting a weak electric current near the offset of 3.5-s tone bursts. An adaptive staircase procedure was used to find detection thresholds at frequencies between 100 and 1700 Hz. The mean audiogram from six individuals revealed high sensitivity in the 200-900 Hz range, with the best thresholds near 500 Hz (66.5+/-4.2 SE dB re: 1 microPa). Sensitivity declined slowly (about 20 dB/octave) above and below this sensitivity maximum. Sensitivity fell off rapidly above 1 kHz (about 60 dB/octave) and no responses were observed at 5 kHz. This behavioral sensitivity matched closely the spectral content of the sounds that this species produced during courtship. Experiments with click trains showed that sensitivity (about 83-dB peak) was independent of inter-click-interval, within the 10-100 ms range.  相似文献   

9.
Behavioral psychophysical techniques were used to evaluate the residual effects of underwater noise on the hearing sensitivity of three pinnipeds: a California sea lion (Zalophus californianus), a harbor seal (Phoca vitulina), and a northern elephant seal (Mirounga angustirostris). Temporary threshold shift (TTS), defined as the difference between auditory thresholds obtained before and after noise exposure, was assessed. The subjects were exposed to octave-band noise centered at 2500 Hz at two sound pressure levels: 80 and 95 dB SL (re: auditory threshold at 2500 Hz). Noise exposure durations were 22, 25, and 50 min. Threshold shifts were assessed at 2500 and 3530 Hz. Mean threshold shifts ranged from 2.9-12.2 dB. Full recovery of auditory sensitivity occurred within 24 h of noise exposure. Control sequences, comprising sham noise exposures, did not result in significant mean threshold shifts for any subject. Threshold shift magnitudes increased with increasing noise sound exposure level (SEL) for two of the three subjects. The results underscore the importance of including sound exposure metrics (incorporating sound pressure level and exposure duration) in order to fully assess the effects of noise on marine mammal hearing.  相似文献   

10.
The widespread use of powerful, low-frequency air-gun pulses for seismic seabed exploration has raised concern about their potential negative effects on marine wildlife. Here, we quantify the sound exposure levels recorded on acoustic tags attached to eight sperm whales at ranges between 1.4 and 12.6 km from controlled air-gun array sources operated in the Gulf of Mexico. Due to multipath propagation, the animals were exposed to multiple sound pulses during each firing of the array with received levels of analyzed pulses falling between 131-167 dB re. 1 microPa (pp) [111-147 dB re. 1 microPa (rms) and 100-135 dB re. 1 microPa2 s] after compensation for hearing sensitivity using the M-weighting. Received levels varied widely with range and depth of the exposed animal precluding reliable estimation of exposure zones based on simple geometric spreading laws. When whales were close to the surface, the first arrivals of air-gun pulses contained most energy between 0.3 and 3 kHz, a frequency range well beyond the normal frequencies of interest in seismic exploration. Therefore air-gun arrays can generate significant sound energy at frequencies many octaves higher than the frequencies of interest for seismic exploration, which increases concern of the potential impact on odontocetes with poor low frequency hearing.  相似文献   

11.
The underwater hearing sensitivity of a two-year-old harbor porpoise was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using narrow-band frequency-modulated signals having center frequencies between 250 Hz and 180 kHz. The resulting audiogram was U-shaped with the range of best hearing (defined as 10 dB within maximum sensitivity) from 16 to 140 kHz, with a reduced sensitivity around 64 kHz. Maximum sensitivity (about 33 dB re 1 microPa) occurred between 100 and 140 kHz. This maximum sensitivity range corresponds with the peak frequency of echolocation pulses produced by harbor porpoises (120-130 kHz). Sensitivity falls about 10 dB per octave below 16 kHz and falls off sharply above 140 kHz (260 dB per octave). Compared to a previous audiogram of this species (Andersen, 1970), the present audiogram shows less sensitive hearing between 2 and 8 kHz and more sensitive hearing between 16 and 180 kHz. This harbor porpoise has the highest upper-frequency limit of all odontocetes investigated. The time it took for the porpoise to move its head 22 cm after the signal onset (movement time) was also measured. It increased from about 1 s at 10 dB above threshold, to about 1.5 s at threshold.  相似文献   

12.
A behavioral response paradigm was used to measure underwater hearing thresholds in two California sea lions (Zalophus californianus) before and after exposure to underwater impulses from an arc-gap transducer. Preexposure and postexposure hearing thresholds were compared to determine if the subjects experienced temporary shifts in their masked hearing thresholds (MTTS). Hearing thresholds were measured at 1 and 10 kHz. Exposures consisted of single underwater impulses produced by an arc-gap transducer referred to as a "pulsed power device" (PPD). The electrical charge of the PPD was varied from 1.32 to 2.77 kJ; the distance between the subject and the PPD was varied over the range 3.4 to 25 m. No MTTS was observed in either subject at the highest received levels: peak pressures of approximately 6.8 and 14 kPa, rms pressures of approximately 178 and 183 dB re: 1 microPa, and total energy fluxes of 161 and 163 dB re: 1 microPa2s for the two subjects. Behavioral reactions to the tests were observed in both subjects. These reactions primarily consisted of temporary avoidance of the site where exposure to the PPD impulse had previously occurred.  相似文献   

13.
The audiograms of three Japanese macaques and seven humans were determined in a free-field environment using loudspeakers. The monkeys and humans were tested using tones ranging from 8 Hz to 40 kHz and 4 Hz to 22.4 kHz, respectively. At a level of 60 dB sound pressure level the monkeys were able to hear tones extending from 28 Hz to 37 kHz with their best sensitivity of 1 dB occurring at 4 kHz. The human 60-dB hearing range extended from 31 Hz to 17.6 kHz with a best sensitivity of -10 dB at 2 and 4 kHz. These results indicate that the Japanese macaque has low-frequency hearing equal to that of humans and better than that indicated by previous audiograms obtained using headphones.  相似文献   

14.
The underwater hearing sensitivity of a striped dolphin was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using 12 narrow-band frequency-modulated signals having center frequencies between 0.5 and 160 kHz. The 50% detection threshold was determined for each frequency. The resulting audiogram for this animal was U-shaped, with hearing capabilities from 0.5 to 160 kHz (8 1/3 oct). Maximum sensitivity (42 dB re 1 microPa) occurred at 64 kHz. The range of most sensitive hearing (defined as the frequency range with sensitivities within 10 dB of maximum sensitivity) was from 29 to 123 kHz (approximately 2 oct). The animal's hearing became less sensitive below 32 kHz and above 120 kHz. Sensitivity decreased by about 8 dB per octave below 1 kHz and fell sharply at a rate of about 390 dB per octave above 140 kHz.  相似文献   

15.
A behavioral response paradigm was used to measure pure-tone hearing sensitivities in two belugas (Delphinapterus leucas). Tests were conducted over a 20-month period at the Point Defiance Zoo and Aquarium, in Tacoma, WA. Subjects were two males, aged 8-10 and 9-11 during the course of the study. Subjects were born in an oceanarium and had been housed together for all of their lives. Hearing thresholds were measured using a modified up/down staircase procedure and acoustic response paradigm where subjects were trained to produce audible responses to test tones and to remain quiet otherwise. Test frequencies ranged from approximately 2 to 130 kHz. Best sensitivities ranged from approximately 40 to 50 dB re 1 microPa at 50-80 kHz and 30-35 kHz for the two subjects. Although both subjects possessed traditional "U-shaped" mammalian audiograms, one subject exhibited significant high-frequency hearing loss above 37 kHz compared to previously published data for belugas. Hearing loss in this subject was estimated to approach 90 dB for frequencies above 50 kHz. Similar ages, ancestry, and environmental conditions between subjects, but a history of ototoxic drug administration in only one subject, suggest that the observed hearing loss was a result of the aminoglycoside antibiotic amikacin.  相似文献   

16.
Five squirrel monkeys were exposed for 1, 2, 4, 8, 16, 24, and 48 h to a 375--750-Hz band noise at an overall SPL of 95 dB. The TTS4.5 growth pattern for the 750-Hz test frequency was biphasic and did not reach an asymptote after 48 h of exposure. For all exposures, the mean thresholds of the five monkeys returned to within 5 dB of the preexposure mean 20 h after exposure. Recovery curves from all exposures at the 750-Hz test frequency appeared biphasic. Increasing SPL from 95 to 105 dB increased TTS4.5 by 4 dB at 750 Hz for a 1-h exposure. Recovery from the 105-dB exposure followed the same pattern as recovery from the 95-DB exposure. When compared with data collected from human subjects under similar conditions, these experiments indicate that the growth and recovery of TTS in squirrel monkeys are sufficiently similar to growth and recovery in man to justify further comparative investigation.  相似文献   

17.
A California sea lion (Zalophus californianus) was tested in a behavioral procedure to assess noise-induced temporary threshold shift (TTS) in air. Octave band fatiguing noise was varied in both duration (1.5-50 min) and level (94-133 dB re 20 muPa) to generate a variety of equal sound exposure level conditions. Hearing thresholds were measured at the center frequency of the noise (2500 Hz) before, immediately after, and 24 h following exposure. Threshold shifts generated from 192 exposures ranged up to 30 dB. Estimates of TTS onset [159 dB re (20 muPa)(2) s] and growth (2.5 dB of TTS per dB of noise increase) were determined using an exponential function. Recovery for threshold shifts greater than 20 dB followed an 8.8 dB per log(min) linear function. Repeated testing indicated possible permanent threshold shift at the test frequency, but a later audiogram revealed no shift at this frequency or higher. Sea lions appear to be equally susceptible to noise in air and in water, provided that the noise exposure levels are referenced to absolute sound detection thresholds in both media. These data provide a framework within which to consider effects arising from more intense and/or sustained exposures.  相似文献   

18.
At present, the fundamental frequencies of signals of most commercially available acoustic alarms to deter small cetaceans are below 20 kHz, but it is not well ascertained whether higher frequencies have a deterrent effect on bottlenose dolphins (Tursiops truncatus). Two captive bottlenose dolphins housed in a floating pen were subjected to a continuous pure tone at 50 kHz with a source level of 160 ± 2 dB (re 1 μPa, rms). The behavioral responses of dolphins were judged by comparing surfacing distance relative to the sound source, number of surfacings, and number of echolocation clicks produced, during forty 15 min baseline periods with forty 15 min test periods (four sessions per day, 40 sessions in total). On all 10 study days, surfacing distance and the number of surfacings increased while click production decreased during broadcasts of test sound. The avoidance threshold sound pressure level for a continuous 50 kHz tone for the bottlenose dolphins, in the context of this study, was estimated to be 144 ± 2 dB (re 1 μPa, rms). The results indicated that a continuous 50 kHz tonal signal can deter bottlenose dolphins from an area.  相似文献   

19.
Behaviorally determined hearing thresholds for a 7.5-kHz tone for an Atlantic bottlenosed dolphin (Tursiops truncatus) were obtained following exposure to fatiguing low-frequency octave band noise. The fatiguing stimulus ranged from 4 to 11 kHz and was gradually increased in intensity to 179 dB re 1 microPa and in duration to 55 min. Exposures occurred no more frequently than once per week. Measured temporary threshold shifts averaged 11 dB. Threshold determination took at least 20 min. Recovery was examined 360, 180, 90, and 45 min following exposure and was essentially complete within 45 min.  相似文献   

20.
Performance of a low-frequency,multi-resonant broadband Tonpilz transducer   总被引:2,自引:0,他引:2  
The underwater performance of a high-power multi-resonant Tonpilz transducer with a nearly flat frequency response and a power handling capability of 2 kW (peak) is reported here. A maximum transmitting voltage response (TVR) value of 156 dB re: 1 microPa/V at 1 m has been achieved at 3 kHz with a specially designed matching coil. A maximum receiving sensitivity (RS) of -164 dB re: 1 V/microPa at 3 kHz has been measured without using a matching coil. The horizontal half-power beam width of the transducer at 4 kHz is 101 degrees with a directivity index of 4 dB. This transmitter can be used for oceanographic applications such as subbottom profiling as well as long-range underwater communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号