首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 432 毫秒
1.
Raman spectroscopy complimented by infrared spectroscopy has been used to study the mineral hemimorphite from different origins. The Raman spectra show consistently similar spectra with only one sample showing additional bands due to the presence of smithsonite. Raman bands observed at 3510–3565 and 3436–3455 cm−1 are assigned to OH stretching vibrations. Using a Libowitzky type formula, these OH bands provide hydrogen bond distances of 0.2910, 0.2825, 0.2762 and 0.2716 pm. Water bending modes are observed in the Raman spectrum at 1633 cm−1. An intense Raman band at 930 cm−1 is attributed to SiO symmetric stretching vibration of the Si2O7 units. Raman bands observed at 451 and 400 cm−1are attributed to out-of-plane bending vibrations of the Si2O7 units. Raman bands at 330, 280, 168 and 132 cm−1 are assigned to ZnO and OZnO vibrations.  相似文献   

2.
Neutron inelastic scattering spectra of NaHC2O4, KHC2O4 crystals at 80 K have been recorded in the 2200-200 cm?1 range. The lithium acid salt was also studied at different temperatures. NIS spectra are compared to the corresponding infrared and Raman spectra and an assignment is proposed. Two strong bands near 1500 and 1100 cm?1 are assigned to δ(OH) and γ(OH) vibrations, respectively, while five weak bands below 900 cm?1 are associated with skeletal modes, mainly bending vibrations. The OH stretching vibration is not observed and is believed to be hidden by other bands; the peak intensity must be low because of its band width which is of the order of a few hundreds wavenumbers.  相似文献   

3.
Resonance Raman scattering has been observed from metastable O2 molecules produced in single crystals of NaClO3 by γ-irradiation at 300 K. Evidence that the observed bands are due to O2 is provided by the Raman spectrum of irradiated 18O enriched NaClO3 in which bands due to 16O2, 16O 18O, and 18O2 were identified. The Raman band at 1544 cm?1 ascribed to metastable O2 disappears on bleaching with intense 4880 Å radiation enabling the identification of a weaker band at 1557 cm?1 that is assigned to the stable form of O2.  相似文献   

4.
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb2Sb2O6(O,OH). The mineral is characterised by an intense Raman band at 656 cm−1 assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm−1 are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328 cm−1 are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm−1 may be assigned to δOH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm−1 are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm−1 supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb2Sb2O6(O,OH,H2O).  相似文献   

5.
A detailed study was performed of the interrelationships of the lattice parameters, ionic conductivity, and infrared spectrum of HTi2NbO7 · 2H2O as a function of dehydration. We have shown that the oxide layers in this ion-exchange compound are interespaced with water layers 2-molecules thick, providing a rare example of a bilayer hydrate. Bulk proton transport occurs through these layers, with a conductivity of (8 ± 4) × 10?6 ohm?1cm?1 at 20°C. Upon heating to 55°C, 0.5 H2O per formula was gradually lost, but the conductivity was essentially retained. Upon further heating to 62°C another 0.5 H2O was rapidly lost, resulting in a conductivity drop of a factor of 10. Further water was gradually lost until HTi2NbO7 was reached at 220°C. The X-ray evidence revealed no discrete, fixed-composition hydrate phases, indicating a single isostructural phase from HTi2NbO7 · 2H2O to HTi2NbO7, with a single continuously variable interlayer spacing. The bulk conductivity of CsTi2NbO7 was less than 10?8 ohm?1cm?1.  相似文献   

6.
The basic copper arsenate mineral strashimirite Cu8(AsO4)4(OH)4·5H2O from two different localities has been studied by Raman spectroscopy and complemented by infrared spectroscopy. Two strashimirite mineral samples were obtained from the Czech (sample A) and Slovak (sample B) Republics. Two Raman bands for sample A are identified at 839 and 856 cm−1 and for sample B at 843 and 891 cm−1 are assigned to the ν1 (AsO43−) symmetric and the ν3 (AsO43−) antisymmetric stretching modes, respectively. The broad band for sample A centred upon 500 cm−1, resolved into component bands at 467, 497, 526 and 554 cm−1 and for sample B at 507 and 560 cm−1 include bands which are attributable to the ν4 (AsO43−) bending mode. In the Raman spectra, two bands (sample A) at 337 and 393 cm−1 and at 343 and 374 cm−1 for sample B are attributed to the ν2 (AsO43−) bending mode. The Raman spectrum of strashimirite sample A shows three resolved bands at 3450, 3488 and 3585 cm−1. The first two bands are attributed to water stretching vibrations whereas the band at 3585 cm−1 to OH stretching vibrations of the hydroxyl units. Two bands (3497 and 3444 cm−1) are observed in the Raman spectrum of B. A comparison is made of the Raman spectrum of strashimirite with the Raman spectra of other selected basic copper arsenates including olivenite, cornwallite, cornubite and clinoclase.  相似文献   

7.
In this research, we have used vibrational spectroscopy to study the phosphate mineral kosnarite KZr2(PO4)3. Interest in this mineral rests with the ability of zirconium phosphates (ZP) to lock in radioactive elements. ZP have the capacity to concentrate and immobilize the actinide fraction of radioactive phases in homogeneous zirconium phosphate phases. The Raman spectrum of kosnarite is characterized by a very intense band at 1,026?cm?1 assigned to the symmetric stretching vibration of the PO4 3? ??1 symmetric stretching vibration. The series of bands at 561, 595 and 638?cm?1 are assigned to the ??4 out-of-plane bending modes of the PO4 3? units. The intense band at 437?cm?1 with other bands of lower wavenumber at 387, 405 and 421?cm?1 is assigned to the ??2 in-plane bending modes of the PO4 3? units. The number of bands in the antisymmetric stretching region supports the concept that the symmetry of the phosphate anion in the kosnarite structure is preserved. The width of the infrared spectral profile and its complexity in contrast to the well-resolved Raman spectrum show that the pegmatitic phosphates are better studied with Raman spectroscopy.  相似文献   

8.
The Raman spectrum of n-C36H74 has been measured in the region between 0 and 150 cm?1. Eleven newly observed bands have been assigned to the intramolecular skeletal vibrations and rotatory lattice vibrations on the basis of the dispersion curves calculated previously.  相似文献   

9.
The electronic spectrum of Li4CoCl6.10H2O was recorded at liquid nitrogen temperature in the 4,000–25,000 cm?1 spectral region. The simi larity of this spectrum to that of CoCl2 permitted us to assume Oh syn metry of the [CoCl6]4? cluster in our sample. The band assignment was performed in the crystal field approximation using Tanabe and Sugano's energy matrices for Dq = 730 cm?1, B = 820 cm?1 and C/B = 4.4.The large number of bands and high intensity of the maxima in the regio 19,000–21,000 cm?1 is discussed.  相似文献   

10.
Raman spectra of coquandite Sb6O8(SO4)·(H2O) were studied, and related to the structure of the mineral. Raman bands observed at 970, 990 and 1007 cm?1 and a series of overlapping bands are observed at 1072, 1100, 1151 and 1217 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes respectively. Raman bands at 629, 638, 690, 751 and 787 cm?1 are attributed to the SbO stretching vibrations. Raman bands at 600 and 610 cm?1 and at 429 and 459 cm?1 are assigned to the SO42? ν4 and ν2 bending modes. Raman bands at 359 and 375 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the coquandite structure.  相似文献   

11.
The infrared and Raman spectra of Ba5Li2W3O15 are reported down to 200 cm?1. From the internal stretching modes of the tungstate octahedra the crystallographic order between lithium and tungsten in the face-sharing octahedra can be derived. The green tungstate luminescence shows a low quenching temperature that is described with the Dexter-Klick-Russell model. The U6+ ion shows a yellow emission in Ba5Li2W3O15. There is ample evidence for two different U6+ centers with different decay times (10 and 80 μsec) and different emission and excitation spectra. One of these is located in a single layer of tungstate octahedra, the other in a double layer of octahedra.  相似文献   

12.
Vibrational (IR and Raman) spectra for the metal-free phthalocyanine (H2Pc) have been comparatively investigated through experimental and theoretical methods. The frequencies and intensities were calculated at density functional B3LYP level using the 6-3 IG(d) basis set. The calculated vibrational frequencies were scaled by the factor 0.9613 and compared with the experimental result. In the IR spectrum, the characteristic IR band at 1008.cm^-1 is interpreted as C-N (pyrrole) in-plane bending vibration, in contrast with the traditional assigned N-H in-plane or out-of-plane bending vibration. The band at 874 cm^-1 is attributed to the isoindole deformation and aza vibration. In the Raman spectrum, the bands at 540, 566, 1310, 1340, 1425, 1448 and 1618 cm^-1 are also re-interpreted. Assignments of vibrational bands in the IR and Raman spectra are given based on density functional calculations for the first time. The present work provides valuable information to the traditional empirical assignment and will be helpful for further investigation of the vibration spectra of phthalocyanine analogues and their metal complexes.  相似文献   

13.
Abstract— Resonance Raman (RR) bands assignable to the 21Ag excited state of ß-carotene are recorded using picosecond time-resolved resonance Raman (PTR3) spectroscopy. The RR spectrum contains bands in both the C-C (1204 cm?1, 1243 cm?1, and 1282 cm?1) and C=C (1777 cm?1) stretching regions. The time-dependent intensities of these RR features, measured with ? 30 ps. resolution, are found (i) to closely correlate with picosecond transient absorption (PTA) data recorded at 575 nm on the same sample and (ii) inversely correlate with the time-dependent intensities of RR bands assigned to the 11Ag ground state. Both of these observations support the assignment of these four RR features to the 21Ag excited state. These results remove uncertainties associated with earlier experiments in which excited-state RR scattering from (3-carotene was not observed in spite of predicted trends emanating from studies of shorter polyene compounds. The observed C=C band position also agrees with a recent report of this feature.  相似文献   

14.
The electronic absorption spectrum of the Fe2+ ion doped in ammonium chloride has been studied at room and liquid air temperatures. The observed bands have been assigned transitions from the ground 6A1g(S) state to the excited 4A1g(4Eg), 4T1g(G) and 4T2g(G) states. The cubic field approximation with Dq = 675 cm?1, B = 645 cm?1 and C = 4.4 B is found to give a good fit to the observed band positions.It is further concluded that the site symmetry of the Fe3+ ion in the crystal is lowered from Oh to C4v symmetry at liquid air temperature.  相似文献   

15.
Here we report a temperature-dependent Raman study of the pyrochlore “dynamic spin-ice” compound Pr2Sn2O7 and compare the results with its non-pyrochlore (monoclinic) counterpart Pr2Ti2O7. In addition to phonon modes, we observe two bands associated with electronic Raman scattering involving crystal field transitions in Pr2Sn2O7 at ∼135 and 460 cm−1 which couple strongly to phonons. Anomalous temperature dependence of phonon frequencies that are observed in pyrochlore Pr2Sn2O7 are absent in monoclinic Pr2Ti2O7. This, therefore, confirms that the strong phonon-phonon anharmonic interactions, responsible for the temperature-dependent anomalous behavior of phonons, arise due to the inherent vacant sites in the pyrochlore structure.  相似文献   

16.
Raman spectroscopy has been sued to study the antimony containing mineral roméite Ca2Sb2O6(OH,F,O) from three different origins. Roméite is a calcium antimonate mineral of the pyrochlore group. An intense Raman band at ~518 cm?1 for roméite is assigned to the SbO ν1 symmetric stretching mode and the band at 466 cm?1 to the SbO ν3 antisymmetric stretching mode. The Raman band at 303 cm?1 is attributed to the OSbO bending mode. Some variation in band positions is observed and is attributed to the variation in composition between the three mineral samples.  相似文献   

17.
We present a detailed study of Raman spectroscopy and photoluminescence measurements on Li‐doped ZnO nanocrystals with varying lithium concentrations. The samples were prepared starting from molecular precursors at low temperature. The Raman spectra revealed several sharp lines in the range of 100–200 cm?1, which are attributed to acoustical phonons. In the high‐energy range two peaks were observed at 735 cm?1 and 1090 cm?1. Excitation‐dependent Raman spectroscopy of the 1090 cm?1 mode revealed resonance enhancement at excitation energies around 2.2 eV. This energy coincides with an emission band in the photoluminescence spectra. The emission is attributed to the deep lithium acceptor and intrinsic point defects such as oxygen vacancies. Based on the combined Raman and PL results, we introduce a model of surface‐bound LiO2 defect sites, that is, the presence of Li+O2? superoxide. Accordingly, the observed Raman peaks at 735 cm?1 and 1090 cm?1 are assigned to Li? O and O? O vibrations of LiO2.  相似文献   

18.
We have measured the Raman spectra of ethylene-vinyl alcohol copolymer (EVOH) and poly(vinyl alcohol) (PVOH). Spectra of 88% hydrolyzed PVOH were examined from the partially crystalline solid, from PVOH dissolved in both H2O and D2O, and from films precipitated from these solutions. The spectrum in H2O differs from that of the starting material by disappearance of sharp bands having Raman shift values of 1146 and 1093 cm?1, strengthening of a band near 915 cm?1, decrease in frequency of bands at 480, 1356, and 1441 cm?1, and increase in frequency of bands at 369, 413, 1023, 1371, and 2910 cm?1. The spectrum of the film shows partial reversal of these trends. With D2O as the solvent, the band shifts are slightly different from those listed above and new bands appear. These changes are indicative of loss of crystallinity, change in stereochemistry, and partial deuteration of hydroxyl during dissolution of this PVOH sample at room temperature. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2·2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm?1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm?1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm?1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm?1 and at 417, 434 and 482 cm?1 are assigned to the SO42? ν4 and ν2 bending modes, respectively. Raman bands at 337 and 373 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the peretaite structure.  相似文献   

20.
The Raman spectra of Li0.5Co0.1Fe2.4O4 nanoparticles have been recorded in the spectral range, 400-800 cm−1 at four different particle sizes. X-ray and TEM measurements were done to determine crystal structure and size of the nanoparticles. X-ray diffraction (XRD) shows that the Li0.5Co0.1Fe2.4O4 nanoparticles have an order phase spinel structure without any impurity. The size of the nanocrystal was calculated through XRD patterns and TEM micrographs and it turns out to be 34-42 nm. The Raman spectra of each size nanoparticles show five Raman bands. The most intense Raman band shows a noticeable asymmetrical feature towards lower wavenumber side. A line shape analysis was performed to get the exact spectral parameters of the Raman bands. The intensity of asymmetrical feature keeps on increasing with decreasing the particle size from 42 nm to 34 nm and finally evolved as a new Raman band. The appearance of new band and its intensity response relative to the intensity of the main Raman band as a function of particle size has been explained in terms of electron-phonon coupling. It was observed that the strength of electron-phonon coupling goes on increasing with reducing the particle size. The red shifting of the Raman bands upon reducing the crystalline size is explained in terms of the lattice expansion, which is well supported by the XRD data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号