首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we study the Λ c and Λ b baryons in the nuclear matter using the QCD sum rules, and obtain the in-medium masses M\varLambda c*=2.335 GeVM_{\varLambda _{c}}^{*}=2.335~\mathrm{GeV}, M\varLambda b*=5.678 GeVM_{\varLambda _{b}}^{*}=5.678~\mathrm{GeV}, the in-medium vector self-energies \varSigma \varLambda cv=34 MeV\varSigma ^{\varLambda _{c}}_{v}=34~\mathrm{MeV}, \varSigma \varLambda bv=32 MeV\varSigma ^{\varLambda _{b}}_{v}=32~\mathrm {MeV}, and the in-medium pole residues l\varLambda c*=0.021 GeV3\lambda_{\varLambda _{c}}^{*}=0.021~\mathrm{GeV}^{3}, l\varLambda b*=0.026 GeV3\lambda_{\varLambda _{b}}^{*}=0.026~\mathrm{GeV}^{3}. The mass-shifts are M\varLambda c*-M\varLambda c=51 MeVM_{\varLambda _{c}}^{*}-M_{\varLambda _{c}}=51~\mathrm{MeV} and M\varLambda b*-M\varLambda b=60 MeVM_{\varLambda _{b}}^{*}-M_{\varLambda _{b}}=60~\mathrm{MeV}, respectively.  相似文献   

2.
The temperature dependences of magnetic entropy change and refrigerant capacity have been calculated for a maximum field change of Δ H=30 kOe in as-quenched ribbons of the ferromagnetic shape memory alloy Ni50.4Mn34.9In14.7 around the structural reverse martensitic transformation and magnetic transition of austenite. The ribbons crystallize into a single-phase austenite with the L21-type crystal structure and Curie point of 284 K. At 262 K austenite starts its transformation into a 10-layered structurally modulated monoclinic martensite. The first- and second-order character of the structural and magnetic transitions was confirmed by the Arrott plot method. Despite the superior absolute value of the maximum magnetic entropy change obtained in the temperature interval where the reverse martensitic transformation occurs (|\varDelta SMmax|=7.2 J kg-1 K-1)(|\varDelta S_{\mathrm{M}}^{\max}|=7.2\mbox{ J}\,\mbox{kg}^{-1}\,\mbox{K}^{-1}) with respect to that obtained around the ferromagnetic transition of austenite (|\varDelta SMmax|=2.6 J kg-1 K-1)(|\varDelta S_{\mathrm{M}}^{\max}|=2.6\mbox{ J}\,\mbox{kg}^{-1}\,\mbox{K}^{-1}), the large average hysteretic losses due to the effect of the magnetic field on the phase transformation as well as the narrow thermal dependence of the magnetic entropy change make the temperature interval around the ferromagnetic transition of austenite of a higher effective refrigerant capacity (RCmagneff=95J kg-1\mathrm{RC}^{\mathrm{magn}}_{\mathrm{eff}}=95\mbox{J}\,\mbox{kg}^{-1} versus RCstructeff=60J kg-1)\mathrm{RC}^{\mathrm{struct}}_{\mathrm{eff}}=60\mbox{J}\,\mbox{kg}^{-1}).  相似文献   

3.
This paper considers Hardy–Lieb–Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality
tr( (-D)2 - CHRd,2\frac1|x|4 - V(x) )-gCgò\mathbbRd V(x)+g+ \fracd4 dx,     g 3 1 - \frac d 4,\mathrm{tr}\left( (-\Delta)^2 - C^{\mathrm{HR}}_{d,2}\frac{1}{|x|^4} - V(x) \right)_-^{\gamma}\leq C_\gamma\int\limits_{\mathbb{R}^d} V(x)_+^{\gamma + \frac{d}{4}}\,\mathrm{d}x, \quad \gamma \geq 1 - \frac d 4,  相似文献   

4.
We investigated a variation of frequency-dependent alternating current (AC) surface photovoltages (SPVs) in thermally oxidized, chromium-contaminated, n-type silicon (Si) wafers. As previously reported, immediately after rinsing in Cr-contaminated solution, a Cr(OH)3–Si contact causes a Schottky-barrier-type AC SPV on n-type Si. Upon oxidation at 373 K for 10 min, the Schottky barrier collapses and, with further oxidation, a metal-induced negative oxide charge, due to atomic bridging of (CrOSi) and/or CrO2-\mathrm{CrO}_{2}^{-} networks, definitely grows over time in SiO2. For samples oxidized at temperatures between 823 and 1023 K for 30 min, the observed AC SPV gives evidence that the metal-induced negative oxide charge causes a strongly inverted state of the Si surface. At oxidation temperatures higher than 1023 K and /or for an oxidation time longer than 60 min, the level height of the AC SPV is reduced, implying that the strongly inverted state changes into a less depleted state, whilst, finally, the AC SPV disappears. In this case, the collapse of the (CrOSi) and/or CrO2-\mathrm{CrO}_{2}^{-} networks is anticipated, with a possible change into Cr2O3. The existence of the (CrOSi) and/or CrO2-\mathrm{CrO}_{2}^{-} networks has also been confirmed in p-type Si wafers.  相似文献   

5.
Neutral and cationic Zn n O m clusters of various stoichiometry have been produced by nanosecond laser ablation of ZnO in vacuum and investigated by time-of-flight mass spectrometry. Particular attention was paid to the effect of laser wavelength (in the range from near-IR to UV) on cluster composition. Under 193-nm laser ablation, the charged clusters are essentially substoichiometric with ZnnOn-1+\mathrm{Zn}_{n}\mathrm{O}_{n-1}^{+} and ZnnOn-3+\mathrm{Zn}_{n}\mathrm{O}_{n-3}^{+} being the most abundant series. Both sub- and stoichiometric cationic clusters are generated in abundance at 532- and 1064-nm ablation whose composition depends on the cluster size. The reactivity of small stoichiometric ZnnOn+\mathrm{Zn}_{n}\mathrm{O}_{n}^{+} clusters (n<11) toward hydrogen is found to be high, while oxygen-deficient species are less reactive. The neutral plume particles are mainly stoichiometric with Zn4O4 tetramer being a magic cluster. It is suggested that the Zn4O4 loss is the dominant fragmentation channel of large zinc oxide clusters upon electron impact. Plume expansion conditions under ZnO ablation with visible and IR laser pulses are shown to be favorable for stoichiometric cluster formation.  相似文献   

6.
We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Wbh2 = 0.02263+0.00184-0.00162 (1s)+0.00213-0.00195 (2s){\Omega_{b}h^{2}\,{=}\,0.02263^{+0.00184}_{-0.00162} (1\sigma)^{+0.00213}_{-0.00195} (2\sigma)}, Bs = 0.7788+0.0736-0.0723(1s)+0.0918-0.0904 (2s){B_{s}\,{=}\,0.7788^{+0.0736}_{-0.0723}(1\sigma)^{+0.0918}_{-0.0904} (2\sigma)}, a = 0.1079+0.3397-0.2539 (1s)+0.4678-0.2911 (2s){\alpha\,{=}\,0.1079^{+0.3397}_{-0.2539} (1\sigma)^{+0.4678}_{-0.2911} (2\sigma)}, B = 0.00189+0.00583-0.00756(1s)+0.00660-0.00915 (2s){B\,{=}\,0.00189^{+0.00583}_{-0.00756}(1\sigma)^{+0.00660}_{-0.00915} (2\sigma)}, and H0=70.711+4.188-3.142 (1s)+5.281-4.149(2s){H_{0}=70.711^{+4.188}_{-3.142} (1\sigma)^{+5.281}_{-4.149}(2\sigma)}.  相似文献   

7.
Charge-transfer reactions are observed in a photoluminescence study of NF3\rm NF_3-doped free krypton clusters. They show up in emissions from Kr+F-\rm Kr^{+}F^{-}free excimers ejected from the clusters, and from excited Kr2+F-\rm Kr_2^{+}F^{-}and Kr2+(NF3)m-{\rm Kr}_2^{+}({\rm NF}_3)_m^{-} (m 3(m\geq 1) solvated in the clusters. The results show that reaction dynamics in clusters differs considerably from that in the gas and solid phases.  相似文献   

8.
The absolute majority of phosphors are composed of a host lattice and some percentage of an activator. At higher activator concentrations the concentration quenching occurs. However, there are phosphors in which only minor quenching of the emission occurs with increasing of the activator content. Based on the existence of two different valence states of the Eu ion (2+ and 3+), two approaches for the development of “concentrated phosphors”, i.e. light emitting materials in which the activator ion is a main part of the crystal lattice, are discussed. In both approaches, reduced energy migration leading to the luminescence quenching is considered as a main condition to reach a high quantum efficiency of a concentrated phosphor. Two kinds of phosphors—Eu2+-doped alumosilicate and Eu3+-doped oxyfluoride—are used as an experimental basis for this discussion. Starting from the stoichiometric Ca1-xEux2+Al2Si2O8\mathrm{Ca}_{1-x}\mathrm{Eu}_{x}^{2+}\mathrm{Al}_{2}\mathrm{Si}_{2}\mathrm{O}_{8} anorthite and Eu3+OF oxyfluorides, the non-stoichiometric powders with Eu2+0.92Al1.76Si2.24O8\mathrm{Eu}^{2+}_{0.92}\mathrm{Al}_{1.76}\mathrm{Si}_{2.24}\mathrm{O}_{8}, Eu3+(O, F)2,35 and Eu3+(O, F)2,16 compositions were synthesized by a solid state reaction and investigated. It was shown that—in spite of the almost 100% Eu concentration—light converters with high quantum efficiency of more than 45% can be realized. A possible application of these materials as UV LED light converters for white light emitting diodes are discussed as well.  相似文献   

9.
Ultrafast delocalization of hydrogen atoms in allene (CH2=C=CH2) induced by intense laser fields was investigated by the Coulomb explosion coincidence momentum imaging method. On the basis of the kinetic energy distributions of the fragment ions produced through the two three-body Coulomb explosion pathways, C3H43+ ? H+ + CH+ + C2H2+\mathrm{C}_{3}\mathrm{H}_{4}^{3+} \rightarrow \mathrm{H}^{+} + \mathrm{CH}^{+} + \mathrm{C}_{2}\mathrm{H}_{2}^{+} and C3H43+ ? H+ + C2H+ +CH2+\mathrm{C}_{3}\mathrm{H}_{4}^{3+} \rightarrow \mathrm{H}^{+} + \mathrm{C}_{2}\mathrm{H}^{+} +\mathrm{CH}_{2}^{+}, and the proton maps for both pathways, it was shown that the decomposition proceeds in a stepwise manner as well as in a concerted manner. The time scale of the hydrogen migration within an allene molecule was estimated to be ∼20 fs.  相似文献   

10.
We find that the Fock space projector |n〉〈n| is a Weyl ordered Laguerre polynomial 2 ::(-)nLn ( 4afa ) e-2afa ::2{\,}^{:}_{:}(-)^{n}L_{n} ( 4a^{\dagger}a ) e^{-2a^{\dagger}a}{\,}^{:}_{:}, where a a is the number operator,:: ::,{}^{:}_{:}\ {}^{:}_{:} denotes the Weyl ordering symbol. This brings convenience to derive the Wigner functions of many other quantum states.  相似文献   

11.
We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative properties of the minimizers in the parameter range |log ε|≪Ωε −2|log ε|−1 where Ω is the rotational velocity and the coupling parameter is written as ε −2 with ε≪1. Three critical speeds can be identified. At \varOmega = \varOmegac1 ~ |loge|\varOmega=\varOmega_{\mathrm{c_{1}}}\sim |\log\varepsilon| vortices start to appear and for |loge| << \varOmega < \varOmegac2 ~ e-1|\log\varepsilon|\ll\varOmega< \varOmega_{\mathrm{c_{2}}}\sim \varepsilon^{-1} the vorticity is uniformly distributed over the disc. For \varOmega 3 \varOmega c2\varOmega\geq\varOmega _{\mathrm{c_{2}}} the centrifugal forces create a hole around the center with strongly depleted density. For Ωε −2|log ε|−1 vorticity is still uniformly distributed in an annulus containing the bulk of the density, but at \varOmega = \varOmegac3 ~ e-2|loge|-1\varOmega=\varOmega_{\mathrm {c_{3}}}\sim\varepsilon ^{-2}|\log\varepsilon |^{-1} there is a transition to a giant vortex state where the vorticity disappears from the bulk. The energy is then well approximated by a trial function that is an eigenfunction of angular momentum but one of our results is that the true minimizers break rotational symmetry in the whole parameter range, including the giant vortex phase.  相似文献   

12.
We make the cosmological constant, Λ, into a field and restrict the variations of the action with respect to it by causality. This creates an additional Einstein constraint equation. It restricts the solutions of the standard Einstein equations and is the requirement that the cosmological wave function possess a classical limit. When applied to the Friedmann metric it requires that the cosmological constant measured today, t U , be L ~ tU-2 ~ 10-122{\Lambda \sim t_{U}^{-2} \sim 10^{-122}} , as observed. This is the classical value of Λ that dominates the wave function of the universe. Our new field equation determines Λ in terms of other astronomically measurable quantities. Specifically, it predicts that the spatial curvature parameter of the universe is Wk0 o -k/a02H2=-0.0055{\Omega _{\mathrm{k0}} \equiv -k/a_{0}^{2}H^{2}=-0.0055} , which will be tested by Planck Satellite data. Our theory also creates a new picture of self-consistent quantum cosmological history.  相似文献   

13.
The damages triggered by ionizing radiation on chemical and biological targets depend on the survival probability of radicals produced in clusters of ionization-excitation events. In this paper, we report on femtolysis (FEMTOsecond radioLYSIS) of pure liquid water using an innovative laser produced high-energy, ultra-short electron bunches in the 2.5-15 MeV range and high energy radiation femtochemistry (HERF) measurements. The short-time monitoring of a primary reducing radical, hydrated electron e-aq^{-}_{aq}, has been performed in confined ionization spaces (nascent spurs). The calculated yield of hydrated electrons at early time, G(e-aq)ETG({\rm e}^{-}_{aq})_{ET}, is estimated to be 6.5 ± 0.5 (number/100 eV) at t ~ 5 ps after the ultrafast energy deposition. This estimated value is high compare to (i) the available data of previous works that used scavenging techniques; (ii) the predictions of stochastic water radiolysis modelling for which the initial behaviour of hydrated electron is investigated in the framework of a classical diffusion regime of independent pairs. The HERF developments give new insights into the early ubiquitous radical escape probability in nascent aqueous spurs and emphasize the importance of short-lived solvent bridged electron-radical complexes [H3O+...{\rm H}_{3}{\rm O}^{+...}  eaq-{\rm e}_{aq}^{-} ..OH]nH2O{\rm OH}]_{n{\rm H}_2{\rm O}} (non-independent pairs). A complete understanding of the G(e-aq)ET{\rm e}^{-}_{aq})_{ET} value needs to account for quantum aspects of 1s-like trapped electron ground state and neoformed prototropic radicals that govern ultra-fast recombination processes within these non-independent pair configurations. Femtolysis data emphasize that within a time-dependent non-diffusion regime, spatio-temporal correlations between hydrated electron and nearest neighbours OH radical or hydrated proton (H3O+{\rm H}_{3}{\rm O}^{+}) would assist ultrafast anisotropic 1D recombination within solvent bridged electron-radical complexes. The emerging HERF domain would provide guidance for understanding of ultrashort-lived sub-structure of tracks and stimulate future semi-quantum simulations on prethermal radical reactions.  相似文献   

14.
We have studied the interaction of Al13-_{13}^{-} anion cluster with H2. Both the long range interaction and dissociative adsorption have been examined using the established correlated ab initio methods, MP2 and CCSD(T), in conjunction with the augmented correlation consistent basis sets up to aug-cc-pVTZ. The formation of the weakly bound (physisorbed) end-on anion complex Al13-_{13}^{-}...H2 is predicted for the interacting Al...H distances of 3.95 ? with the H-H axis pointing towards the ‘hollow’ site of Al13-_{13}^{-} and binding energy (De)D_{e}) of 0.7 kcal/mol at the estimated complete basis set (CBS) limit of CCSD(T). The barrier height for H2 dissociation on Al13-_{13}^{-} of 41.6 (42.9) kcal/mol calculated at the ZPVE-corrected CCSD(T)/aug-cc-pVTZ (estimated CCSD(T)/CBS) level is at least twice as large as that evaluated by us for a dissociative adsorption of H2 on an open-shell Al13 neutral cluster. To our knowledge, this report presents the first “benchmark” quality study of the physisorption and dissociative chemisorption of molecular hydrogen on Al13-_{13}^{-} anion cluster.  相似文献   

15.
In this article, we assume that there exist scalar D*[`(D)]*{D}^{\ast}{\bar {D}}^{\ast}, Ds*[`(D)]s*{D}_{s}^{\ast}{\bar{D}}_{s}^{\ast}, B*[`(B)]*{B}^{\ast}{\bar {B}}^{\ast} and Bs*[`(B)]s*{B}_{s}^{\ast}{\bar{B}}_{s}^{\ast} molecular states, and study their masses using the QCD sum rules. The numerical results indicate that the masses are about (250–500) MeV above the corresponding D *–[`(D)]*{\bar{D}}^{\ast}, D s *–[`(D)]s*{\bar {D}}_{s}^{\ast}, B *–[`(B)]*{\bar{B}}^{\ast} and B s *–[`(B)]s*{\bar {B}}_{s}^{\ast} thresholds, the Y(4140) is unlikely a scalar Ds*[`(D)]s*{D}_{s}^{\ast}{\bar{D}}_{s}^{\ast} molecular state. The scalar D*[`(D)]*D^{\ast}{\bar{D}}^{\ast}, Ds*[`(D)]s*D_{s}^{\ast}{\bar{D}}_{s}^{\ast}, B*[`(B)]*B^{\ast}{\bar{B}}^{\ast} and Bs*[`(B)]s*B_{s}^{\ast}{\bar{B}}_{s}^{\ast} molecular states maybe not exist, while the scalar D*[`(D)]¢*{D'}^{\ast}{\bar{D}}^{\prime\ast}, Ds¢*[`(D)]s¢*{D}_{s}^{\prime\ast}{\bar{D}}_{s}^{\prime\ast}, B¢*[`(B)]¢*{B}^{\prime\ast}{\bar{B}}^{\prime\ast} and Bs¢*[`(B)]s¢*{B}_{s}^{\prime\ast}{\bar{B}}_{s}^{\prime\ast} molecular states maybe exist.  相似文献   

16.
We consider a Gaussian diffusion X t (Ornstein-Uhlenbeck process) with drift coefficient γ and diffusion coefficient σ 2, and an approximating process YetY^{\varepsilon}_{t} converging to X t in L 2 as ε→0. We study estimators [^(g)]e\hat{\gamma}_{\varepsilon}, [^(s)]2e\hat{\sigma}^{2}_{\varepsilon} which are asymptotically equivalent to the Maximum likelihood estimators of γ and σ 2, respectively. We assume that the estimators are based on the available N=N(ε) observations extracted by sub-sampling only from the approximating process YetY^{\varepsilon}_{t} with time step Δ=Δ(ε). We characterize all such adaptive sub-sampling schemes for which [^(g)]e\hat{\gamma}_{\varepsilon}, [^(s)]2e\hat{\sigma}^{2}_{\varepsilon} are consistent and asymptotically efficient estimators of γ and σ 2 as ε→0. The favorable adaptive sub-sampling schemes are identified by the conditions ε→0, Δ→0, (Δ/ε)→∞, and NΔ→∞, which implies that we sample from the process YetY^{\varepsilon}_{t} with a vanishing but coarse time step Δ(ε)≫ε. This study highlights the necessity to sub-sample at adequate rates when the observations are not generated by the underlying stochastic model whose parameters are being estimated. The adequate sub-sampling rates we identify seem to retain their validity in much wider contexts such as the additive triad application we briefly outline.  相似文献   

17.
We report a capillary dielectric barrier discharge (Cap-DBD) plasma operated in atmospheric pressure air. The plasma reactor consists of metal wire electrodes inside quartz capillary tubes powered with a low kilohertz frequency AC high voltage power supply. Various reactor geometries (planar, 3-D multilayer, and circular) with wall-to-wall separation ranging from zero up to 500 micron were investigated. For the electrical and spectral measurements, three reactors, each with six tubes, six inches in length, were assembled with gap widths of 500 micron, 225 micron, and 0 micron (i.e. tubes touching). The discharges appear homogenous across the whole device at separations below 225 micron and turned into filamentary discharges at larger gap spaces. The operating voltage was generally around 3–4 kV (rms). The power consumption by the Cap-DBD was calculated using voltage/charge Lissajous figures with observed powers of a few watts to a maximum of about 14 W for the reactor with no gap spacing. Further studies of optical emission spectroscopy (OES) were employed to evaluate the reactive species generated in the microplasma source. The observed emission spectrum was predominantly within the second positive system of N2\mbox{N}_2(C3\mbox{C}^3 Pu\Pi_u–B3\mbox{B}^3 Pg\Pi_g) and the first negative system of N+2\mbox{N}^+_2(B2\mbox{B}^2 S+u\Sigma^+_u–X2\mbox{X}^2 S+g\Sigma^+_g).  相似文献   

18.
The nanocrystalline material of 15 mol% Gd-doped ceria (Ce0.85Gd0.15O2−δ ) was prepared by citrate auto ignition method. The electrical study and dielectric relaxation technique were applied to investigate the ionic transport process in this nanocrystalline material with an average grain size of 13 nm and the dynamic relaxation parameters are deduced in the temperature range of 300–600°C. The ionic transference number in the material is found to be 0.85 at 500°C at ambient conditions. The oxygen ionic conduction in the nanocrystalline Ce0.85Gd0.15O2−δ material follows the hopping mechanism. The grain boundary relaxation is found to be associated with migration of charge carriers. The frequency spectra of modulus M″ exhibited a dielectric relaxation peak corresponding to defect associates (Gd-Vo\blacksquare \blacksquare)\blacksquare(\mathrm{Gd}\mbox{-}\mathrm{V}_{\mathrm{o}}^{_{_{{\blacksquare\,\blacksquare}}}})^{_{_{{\blacksquare}}}}. The material exhibits very low values of migration energy and association energy of the oxygen vacancies in the long-range motion, i.e., 0.84 and 0.07 eV, respectively.  相似文献   

19.
In this paper, we prove a maximum principle for a frequency localized transport-diffusion equation. As an application, we prove the local well-posedness of the supercritical quasi-geostrophic equation in the critical Besov spaces \mathringB1-a¥,q{\mathring{B}^{1-\alpha}_{\infty,q}}, and global well-posedness of the critical quasi-geostrophic equation in \mathringB0¥,q{\mathring{B}^{0}_{\infty,q}} for all 1 ≤ q < ∞. Here \mathringBs¥,q {\mathring{B}^{s}_{\infty,q} } is the closure of the Schwartz functions in the norm of Bs¥,q{B^{s}_{\infty,q}}.  相似文献   

20.
The new intermediate entangled state |η;θ〉 is proposed by virtue of IWOP technique, which is the common eigenvector of [([^(x)]1 - [^(x)]2)cosq-([^(p)]1 - [^(p)]2)sinq][(\hat{x}_{1} - \hat{x}_{2})\cos\theta -(\hat{p}_{1} - \hat{p}_{2})\sin\theta ] and [([^(x)]1 +[^(x)]2)sinq+ ([^(p)]1 + [^(p)]2)cosq][(\hat{x}_{1} +\hat{x}_{2})\sin\theta + (\hat{p}_{1} + \hat{p}_{2})\cos\theta ]. The squeezing transformation operator, Hadamard transformation operator, Fresnel transformation operator and Radon transform operator are constructed by |η;θ〉.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号