首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stereoselective solid surface has been created by the self-assembly of a chiral osmium complex, λ-[Os(phen)3](ClO4)2 (phen=1,10-phenanthroline), onto a single layered clay film deposited on an indium tin oxide (ITO) electrode; the OsII–OsIII redox couple mediates the electrochemical oxidation of chiral 1,1-2-binaphthol in a stereoselective way or the S-isomer is oxidized at 1.4 times higher rate than the R-isomer.  相似文献   

2.
《Polyhedron》1999,18(21):2729-2736
A family of three mixed-ligand osmium complexes of type [Os(PPh3)2(N-N)Br2], where N-N=2,2′-bipyridine (bpy), 4,4′-dimethyl-2,2′-bipyridine (Me2bpy) and 1,10-phenanthroline (phen), have been synthesized and characterized. The complexes are diamagnetic (low-spin d6, S=0) and in dichloromethane solution they show intense MLCT transitions in the visible region. The two bromide ligands have been replaced from the coordination sphere of [Os(PPh3)2(phen)Br2] under mild conditions by a series of anionic ligands L (where L=quinolin-8-olate (q), picolinate (pic), oxalate (Hox) and 1-nitroso-2-naphtholate (nn)) to afford complexes of type [Os(PPh3)2(phen)(L)]+, which have been isolated and characterized as the perchlorate salt. The structure of the [Os(PPh3)2(phen)(pic)]ClO4 complex has been determined by X-ray crystallography. The PPh3 ligands occupy trans positions and the picolinate anion is coordinated to osmium as a bidentate N,O-donor forming a five-membered chelate ring. The [Os(PPh3)2(phen)(L)]+ complexes are diamagnetic and show multiple MLCT transitions in the visible region. The [Os(PPh3)2(N-N)Br2] complexes show an osmium(II)–osmium(III) oxidation (−0.02 to 0.12 V vs. SCE) followed by an osmium(III)–osmium(IV) oxidation (1.31 to 1.43 V vs. SCE). The [Os(PPh3)2(phen)(L)]+ complexes display the osmium (II)–osmium (III) oxidation (0.26 to 0.84 V vs. SCE) and one reduction of phen (−1.50 to −1.79 V vs. SCE). The osmium (III)–osmium (IV) oxidation has been observed only for the L=q and L=Hox complexes at 1.38 V vs. SCE and 1.42 V vs. SCE respectively. The osmium(III) species, viz. [OsIII(PPh3)2(N-N)Br2]+ and [OsIII(PPh3)2(phen)(L)]2+, have been generated both chemically and electrochemically and characterized in solution by electronic spectroscopy and cyclic voltammetry.  相似文献   

3.
Three new organic–inorganic hybrid compounds constructed from Keggin-type polyanions and transition metal complexes, [Mn(2,2′-bipy)3]1.5[BW12O40Mn(2,2′-bipy)2(H2O)]·0.25H2O (1), [Fe(2,2′-bipy)3]1.5[BW12O40Fe(2,2′-bipy)2(H2O)]·0.5H2O (2) and [Cu2(phen)2(OH)2]2H[Cu(H2O)2{BW12O40Cu0.75(phen)(H2O)}2]·1.5H2O (3), have been hydrothermally synthesized and characterized by elemental analyses, IR, TGA and single-crystal X-ray diffraction. Compounds 1 and 2 are isostructural and both exhibit monosupporting polyoxometalate cluster structure, each of which contains a [BW12O40]5− cluster decorated by one transition metal complex. Compound 3 contains a bisupporting polyoxometalate cluster anion where two {Cu0.75(phen)(H2O)}0.75+ fragments are supported on the polyoxometalate dimer {Cu(H2O)2(BW12O40)2}8−, this represents the first bisupporting polyoxometalate cluster based on a Keggin-type polyoxometalate dimer, which are further packed together via π–π stacking contacts into an extended 1-D chain.  相似文献   

4.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform crystal-chemical analysis of compounds containing complexes [Os a X b ] z(X = F, Cl, Br, I). Atoms of Os(V) at X = F and Cl, of Os(IV) at X = Cl, Br, and of Os(III) at X = Br were found to exhibit a coordination number of 6 with respect to the halogen atoms and to form OsX6octahedra. The coordination polyhedra of Os(III) for X = Cl, I are square pyramids OsX4. Each Os(III) atom forms one Os–Os bond; as a consequence, the OsBr6octahedra share a face in forming Os2Br3– 9complexes, while the OsX4pyramids (X = Cl, I) dimerize to produce [X4Os–OsX4]2–ions. The influence of the valence state of the Os atoms and of the nature of the halogen atoms on the composition and structure of the complexes formed and some characteristics of the coordination sphere of Os were considered.  相似文献   

5.
A transition metal complex as an electrochemical probe of a DNA sensor must have an applicable redox potential, high binding affinity and chemical stability. Some complexes with the dipyrido[3,2-a:2′,3′-c]phenazine (DPPZ) ligand have been reported to have high binding affinity for DNA. However, it was difficult to detect the targeted DNA electrochemically using these complexes because of the relatively high redox potential. In this work, a combination of bipyridine ligands with functional groups (---NH2, ---CH3 and ---COOH) and the DPPZ ligand were studied. The introduction of electron-donating groups was effective for controlling the redox potential of the DPPZ-type osmium complex. The [Os(DA-bpy)2DPPZ]2+ complex (DA-bpy; 4,4′-diamino-2,2′-bipyridine) had a lower half-wave potential (E1/2) of 147 mV (vs. Ag AgCl) and higher binding affinity with DNA {binding constant, K=3.1×107 M−1 in 10 mmol dm−3 Tris–HCl buffer with 50 mmol dm−3 NaCl (pH 7.76)} than those of other complexes. With the single stranded DNA (ssDNA) modified gold electrode, the hybridization signal (ΔI) of the [Os(DA-bpy)2DPPZ]2+ complex was linear in the concentration range of 1.0 pg ml−1–0.12 μg ml−1 for the targeted DNA with a regression coefficient of 0.999. The detection limit was 0.1 pg ml−1.  相似文献   

6.
In this contribution the substitution of the central protoporphyrin IX iron complex of horseradish peroxidase by the respective osmium porphyrin complex is described. The direct electrochemical reduction of the Os containing horseradish peroxidase (OsHRP) was achieved at ITO and modified glassy carbon electrodes and in combination with spectroscopy revealed the three redox couples OsIIIHRP/OsIVHRP, OsIVHRP/OsVHRP and OsVHRP/OsVIHRP. The midpoint potentials differ dependent on the electrode material used with E1/2 (OsIII/IV) of − 0.4 V (ITO) and − 0.25 V (GC), E1/2 (OsIV/V) of − 0.16 V (ITO) and + 0.10 V (GC), and E1/2 (OsV/VI)of + 0.18 V (ITO), respectively. Moreover, with immobilised OsHRP the direct electrocatalytic reduction of hydrogen peroxide and tert-butyl hydroperoxide was observed. In comparison to electrodes modified with native HRP the sensitivity of the OsHRP-electrode for tert-butyl hydroperoxide is higher.  相似文献   

7.
The osmium nitride complex [OsVI(NH3)4N]3+ undergoes a one-electron reduction in acetonitrile to give [OsV(N)(NH3)4]2+, which further reacts by nitride coupling to give the μ-dinitrogen osmium complex [(CH3CN)(NH3)4OsII(N2)OsII(NH3)4(CH3CN)]4+. The formation of the μ-dinitrogen osmium complex is promoted by the presence of perchlorate anion, which causes the deposition of [(CH3CN)(NH3)4OsII(N2)OsII(NH3)4(CH3CN)](ClO4)4 on the electrode surface upon repetitive voltammetric scans.  相似文献   

8.
The clusters [H2Os4M(CO)12eta6-C6H6)] (M=Os, Ru) may be deprotonated to generate anions [Os4M(CO)12eta6-C6H6)]2- which react with [M′eta6-C6H5R) (MeCN)3]2+(M=Os, Ru; R=H, Me) to give the bicapped tetrahedral clusters [Os4(CO)12MM′eta6-C6H5R)2]. Whereas [Os4(CO)12M2eta6-C6H6)2] (M=Os, Ru) have one Meta6-C6H6) unit in a site connected to three other metals, {3}, and one in a site connected to four other metals, {4}, [Os4(CO)12OsRueta6-C6H6)2] has the Rueta6-C6H6) unit in the {3} site irrespective of whether the Os or Ru anion is capped. Coupling of these anions with Au2dppm yields [Os4M(CO)12eta6-C6H6)(Au2dppm)] (M=Os, Ru), which have the arene ligand in the axial site of a trigonal bipyramid and the digold unit capping two faces. Reduction of [H2Os5(CO)15] with K/Ph2CO and coupling with [Rueta5-C5H5)(MeCN)3]2+yields the monoanion [Os5(CO)15Rueta5-C5H5)]? which reacts with [AuPPh3]+ generating [Os5(CO)15Rueta5-C5H5)(AuPPh3)] with the “Ru(C5H5)” unit in the terminal {3} site.  相似文献   

9.
《Polyhedron》1995,14(23-24)
New complexes of bivalent nickel with isopropylxanthates and nitrogen-donor ligands of composition [Ni(Prixa)2(L)], [Ni(Prixa)2(L1)2], [Ni(L2)2](Prixa)2, and [Ni(L3)3] (Prixa)2 have been synthesized, where Prixa = i-C3H7OCS2, L = 1,2-diaminopropane (1,2-pn), N,N,N′,N′=tetramethylethylenediamine (tmen) or 4,4′-bipyridine (4,4′-bipy), L1 = pyridine (py), L2 = diethylenetriamine (dien) and L3 = ethylenediamine (en), 1,2-diaminopropane or 1,10-phenanthroline (phen). The compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, magnetochemical measurements, molar conductivity and thermal analysis. The compounds containing the complex cation have been one-electron irreversibly oxidized using cyclic voltammetry. The crystal and molecular structures of [Ni(Prixa)2(tmen)] and [Ni(phen)3](Prixa)2 have been elucidated.  相似文献   

10.
The complex [Pt(5,5′-dmbipy)Cl4] (1) (5,5′-dmbipy is 5,5′-dimethyl-2,2′-bipyridine) was prepared from the reaction of H2PtCl6·6H2O with 5,5′-dimethyl-2,2′-bipyridine in methanol. The same method was employed to make [Pt(6-mbipy)Cl4] (2) (6-mbipy is 6-methyl-2,2′-bipyridine). Both complexes were characterized by elemental analysis, IR, UV–Vis, 1H NMR, 13C NMR and 195Pt NMR spectroscopy. Their solid state structures were determined by the X-ray diffraction method.  相似文献   

11.
When the reaction conditions are deliberately controlled by the pH, two different polynuclear manganese complexes, (Δ, Λ)-{Mn3(phen)2 (CH3COO)6} (1) and [Mn(phen)Cl2]n (2) (phen = 1,10-phenanthroline), have been synthesized from the same raw materials. The structural analyses show that 1 has a structure formed by neutral chiral linear trinuclear molecules, while 2 has a structure consisting of one-dimensional infinite chains. A study of the temperature dependent magnetic susceptibilities reveal that 1 is an antiferromagnetically coupled trimer molecule while 2 shows ferromagnetic interactions within the chain.  相似文献   

12.
The structures of Os3(CO)11(PR3) with R=F, OPh, Et, p-C6H4Me, o-C6H4Me, p-C6H4(CF3) and C6H11, and with PR3=P(OCH2)3CMe have been determined. The Os–Os bond lengths in these compounds are compared to the Os–Os lengths for the other structures of Os3(CO)11(PR3) clusters reported in the literature. In most cases, the Os–Os bond length remote from the P ligand [range, 2.8666(4)–2.9044(4) Å] and that in the pseudo-trans position [range, 2.8712(5)–2.900(1) Å] show little variation as the steric and electronic properties of the P ligand are varied. The Os–Os length cis to PR3 shows more variation [range, 2.879(1)–2.9429(4) Å] and is sensitive to both the size and the -donor/-acceptor properties of the PR3 ligand: larger or better donor PR3 ligands cause an increase in the Os–Os bond length. The Os–P distances [range, 2.15(2)–2.478(1) Å] show a similar dependence on the steric and electronic properties of the PR3 ligand.  相似文献   

13.
The cluster Os7(CO)20(CNBu t ) (1) has been prepared in 25% yield by the reaction of Os6(CO)18 with Me3NO and Os(CO)4(CNBu t ) at –78°C. The crystal structure of 1 reveals the expected capped octahedral arrangement of metal atoms with the noncarbonyl ligand attached to the capping Os atom. The OsOs lengths in the two independent molecules in the unit cell are in the range 2.823(1)–2.922(1) Å, with the longer bonds associated with the Os3 triangle farthest from the capping Os atom. The 13C NMR spectrum of 1 in solution at room temperature has a 3:3:1 pattern that is consistent with rotation of the individual Os(CO)2(L) (L=CO or CNBu t ) groups in the cluster. This in turn supports the idea that the capping Os(CO)2(CNBu t ) unit binds to the central Os6 via a centrally directed MO plus two tangential molecular orbitals.  相似文献   

14.
New high yield routes to the high nuclearity hydrido carbonyl clusters [H5Os10(CO)24]- and [H4Os10(CO)24]2-, model systems for the chemisorption of CO and H2 on metal surfaces, are reported. [H5Os10(CO)24]- is obtained in good yields by hydrogenation (1 atm) at 200°C of physisorbed [Os(CO)3(OH)2]n whereas in refluxing ethylene glycol solution, that is less acidic than the silica surface, [H4Os10(CO)24]2- is obtained in high yield starting from [Os(CO)3(OH)2]n or, more conveniently, from -[Os(CO)3Cl2]2 in the presence of the stoichiometric amount of sodium carbonate. The quantitative equilibrium
is confirmed.  相似文献   

15.
Based on the ligand dppz (dppz = dipyrido-[3,2-a:2′,3′-c]phenazine), a new ligand pbtp (pbtp = 4,5,9,11,14-pentaaza-benzo[b]triphenylene) and its polypyridyl ruthenium(II) complexes [Ru(phen)2(pbtp)]2+ (1) (phen = 1,10-phenanthroline and [Ru(bpy)2(pbtp)]2+ (2) (bpy = 2,2′-bipyridine) have been synthesized and characterized by elemental analysis, ES-MS and 1H NMR spectroscopy. The DNA-binding of these complexes were investigated by spectroscopic methods and viscosity measurements. The experimental results indicate that both complexes 1 and 2 bind to CT-DNA in classical intercalation mode, and can enantioselectively interact with CT-DNA. It is interesting to note that the pbtp ruthenium(II) complexes, in contrast to the analogous dppz complexes, do not show fluorescent behavior when intercalated into DNA. When irradiated at 365 nm, both complexes promote the photocleavage of pBR 322 DNA.  相似文献   

16.
An indium tin oxide (ITO) electrode modified with monolayer clay/[Ru(phen)2(dC18bpy)]2+ (phen=1,10-phenanthroline, dC18bpy = 4,4′-dioctadecyl-2,2′ bipyridyl) hybrid film has been fabricated by the Langmuir-Blodgett (LB) method. Atomic force microscopy revealed that the single-layered hybrid film of clay/[Ru(phen)2(dC18bpy)]2+ (denoted as Clay-Ru) was closely packed at a surface pressure of 25 mN·m−1 and had a thickness of 3.4±0.5 nm. Cyclic voltammograms showed that the redox current of Ru(II) complex decreased when incorporated into the clay film, suggesting that the clay layer acts as a barrier against electron transfer. When applied to oxidizing the mononucleotide of guanosine 5′-monophosphate (GMP), a large catalytic oxidative current was achieved on the Clay-Ru(II) modified ITO electrode at the external potential above 900 mV (vs. Ag|AgCl|KCl) and, more significantly, this response was further enhanced by light irradiation (λ>360 nm), in which the photocurrent is increased about 11 times in comparison with that of a bare ITO. Mechanism of the photoelectrocatalytic effect was proposed in terms of the reduction of the photoelectrochemically generated Ru(III) complex in the Clay-Ru film by GMP. Supported by the National Natural Science Foundation of China (Grant Nos. 20471043 and 20843007), Zhejiang Provincial Natural Science Foundation (Grant Nos. Y404118 and Y408177), the “151” Distinguished Person Foundation of Zheji-ang Province of China, Zhejiang Technology Project Foundation (Grant No. 2007C21134) and Wenzhou Technology Project Foundation (Grant No. N2004B040)  相似文献   

17.
The reaction of the heteroleptic Nd(III) iodide, [Nd(L′)(N″)(μ-I)] with the potassium salts of primary aryl amides [KN(H)Ar′] or [KN(H)Ar*] affords heteroleptic, structurally characterised, low-coordinate neodymium amides [Nd(L′)(N″)(N(H)Ar′)] and [Nd(L′)(N″)(N(H)Ar*)] cleanly (L′ = t-BuNCH2CH2[C{NC(SiMe3)CHNt-Bu}], N″ = N(SiMe3)2, Ar′ = 2,6-Dipp2C6H3, Dipp = 2,6-Pri2C6H3, Ar* = 2,6-(2,4,6-Pri3C6H2)2C6H3). The potassium terphenyl primary amide [KN(H)Ar*] is readily prepared and isolated, and structurally characterised. Treatment of these primary amide-containing compounds with alkali metal alkyl salts results in ligand exchange to give alkali metal primary amides and intractable heteroleptic Nd(III) alkyl compounds of the form [Nd(L′)(N″)(R)] (R = CH2SiMe3, Me). Attempted deprotonation of the Nd-bound primary amide in [Nd(L′)(N″)(N(H)Ar*)] with the less nucleophilic phosphazene superbase ButNP{NP(NMe2)3}3 resulted in indiscriminate deprotonations of peripheral ligand CH groups.  相似文献   

18.
[2′,3′,5′,6′-2H4]-2-Hydroxynaringenin is synthesised and incubated with commercially available UDP-glucose and the crude protein extract from Desmoduim uncinatum leaves. The organic extract produces isotopically labelled [2′,3′,5′,6′-2H4]-vitexin and [2′,3′,5′,6′-2H4]-isovitexin. Repeating the experiment with denatured protein or replacing the 2-hydroxynaringenin with [2′,3′,5′,6′-2H4]-apigenin or [2′,3′,5′,6′-2H4]-naringenin results in no observable incorporation. 2-Hydroxynaringenin is therefore the substrate for C-glucosylflavonoid biosynthesis in D. uncinatum.  相似文献   

19.
Four chiral OsII arene anticancer complexes have been isolated by fractional crystallization. The two iodido complexes, (SOs,SC)‐[Os(η6p‐cym)(ImpyMe)I]PF6 (complex 2 , (S)‐ImpyMe: N‐(2‐pyridylmethylene)‐(S)‐1‐phenylethylamine) and (ROs,RC)‐[Os(η6p‐cym)(ImpyMe)I]PF6 (complex 4 , (R)‐ImpyMe: N‐(2‐pyridylmethylene)‐(R)‐1‐phenylethylamine), showed higher anticancer activity (lower IC50 values) towards A2780 human ovarian cancer cells than cisplatin and were more active than the two chlorido derivatives, (SOs,SC)[Os(η6p‐cym)(ImpyMe)Cl]PF6, 1 , and (ROs,RC)‐[Os(η6p‐cym)(ImpyMe)Cl]PF6, 3 . The two iodido complexes were evaluated in the National Cancer Institute 60‐cell‐line screen, by using the COMPARE algorithm. This showed that the two potent iodido complexes, 2 (NSC: D‐758116/1) and 4 (NSC: D‐758118/1), share surprisingly similar cancer cell selectivity patterns with the anti‐microtubule drug, vinblastine sulfate. However, no direct effect on tubulin polymerization was found for 2 and 4 , an observation that appears to indicate a novel mechanism of action. In addition, complexes 2 and 4 demonstrated potential as transfer‐hydrogenation catalysts for imine reduction.  相似文献   

20.
In aqueous solution [Fe2(μ-O)(phen)4(H2O)2]4+ (1, phen = 1,10-phenanthroline) equilibrates with its conjugate bases [Fe2(μ-O)(phen)4(H2O)(OH)]3+ (2) and [Fe2(μ-O)(phen)4(OH)2]2+ (3). In the presence of excess phen and in the pH range 2.5–5.5, the dimer quantitatively oxidizes pyruvic acid to acetic acid and carbon dioxide, the end iron species being ferroin, [Fe(phen)3]2+. The observed reaction rate shows a bell-shaped curve as pH increases, but is independent of added phen. Kinetic analysis shows that (3) is non-reactive and (1) has much higher reactivity than (2) in oxidizing pyruvic acid. The basicity of the bridging oxygen increases with deprotonation of the aqua ligands. The reaction rate decreases significantly in media enriched with D2O in comparison to that in H2O, with a greater retardation at higher pH, suggesting the occurrence of proton coupled electron transfer (PCET; 1e, 1H+), which possibly drags the energetically unfavorable reaction to completion in presence of excess phen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号