首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
Novel terdentate neutral complexes of CuII, NiII, CoII, MnII, ZnII, CdII, HgII, VOII, ZrOII and UO2 II have been prepared using a Schiff base derived from 1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one (4-aminoantipyrine) and acetoacetanilide. The structural features of the chelates have been confirmed by microanalytical data, i.r., u.v.–vis., 1H-n.m.r., e.s.r. and mass spectral techniques. Electronic absorption and i.r. spectra of the complexes indicate an octahedral geometry around the central metal ion, except for the VOII and ZrOII complexes which show square pyramidal geometry. The monomeric and neutral nature of the complexes are confirmed from their magnetic susceptibility and low conductance values. The cyclic voltammogram of the copper complex in MeCN at 300 K shows a quasi-reversible peak for the couple CuII/CuIII at Epc = 0.47 and Epa = 0.61 V versus Ag/AgCl and two irreversible peaks for CuII CuI and CuI Cu0 reduction at Epc = –0.63 and – 0.89 V respectively. The e.s.r. spectra of copper and vanadyl complexes in DMSO solution at 300 K and 77 K were recorded and their salient features are reported. The molecular orbital coefficients (2, 2) were calculated for complexes. The antimicrobial activity of the ligand and its complexes have been extensively studied on microorganisms such as Staphylococcus aureus, Klebsiela pneumoniae, Bacillus subtillis, Escherichia coli, Citrobacter ferundii and Salmonella typhi. Most of the complexes have higher activities than that of the free ligand.  相似文献   

2.
Template condensation of benzidine, formaldehyde, ethylenediamine or 1,3-diaminopropane, metal salt and 1-phenyl-1,3-butanedione or 2,3-butanedione in a 1:4:2:2 molar ratio results in the formation of two new series of binuclear pentaaza macrocyclic complexes: dichloro[1,1-phenylbis(7-methyl-9-phenyl-1,3,6,10,13-pentaazacyclotetradeca-6,9-diene) metal(II)], [M2LCl4] (M = CoII, CuII, FeIII and ZnII) and dichloro[1,1-phenylbis(8,9-dimethyl-1,3,7,10,14-pentaazacyclopentadeca-7,9-diene) metal(II)], [M2LCl4] (M = NiII, CoII, CuII and CdII). Both series were characterized by i.r., 1H-n.m.r., u.v.–vis. spectral studies, conductivity and magnetic susceptibility measurements.  相似文献   

3.
A new ligand, N-phenyl-N -2-furanthiocarbohydrazide (HPhfth), and its complexes with VOIV, MnIII, FeIII, CoII, NiII, CuII and ZnII have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, i.r., n.m.r., u.v.–vis., mass and FAB mass spectral data. The room temperature e.s.r. spectra of the VOIV, FeIII and CuII complexes yield <g> values characteristic of square pyramidal VOIV, octahedral FeIII and square planar CuII, respectively. The NiII and CuII complexes semiconduct, but the ZnII complex is an insulator at room temperature. However, the conductivity increases as the temperature increases from 303–383 K, with a band gap of 0.21–1.01 eV. HPhfth and its soluble complexes have been screened against several bacteria and fungi.  相似文献   

4.
New picoline adducts with carbamic acid [(furan-2-yl)methylene]hydrazide–CuII (CFMH) (1); thiocarbamic acid [(furan-2-yl)methylene]hydrazide–CuII (TFMH) (2); carbamic acid [(furan-2-yl)ethylidene]hydrazide–CuII (CFEH) (3), thiocarbamic acid [(furan-2-yl)ethylidene]hydrazide–CuII (TFEH) (4); carbamic acid [(thiophene-2-yl) methylene]hydrazide–CuII (CTMH) (5), thiocarbamic acid [(thiophene-2-yl)methylene]hydrazide–CuII (TTMH) (6), carbamic acid [(thiophene-2-yl)ethylidene]hydrazide–CuII (CTEH) (7), thiocarbamic acid [(thiophene-2-yl)ethylidene]hydrazide–CuII (TTEH) (8) have been prepared and characterized by analytical, i.r., electronic, e.s.r. and c.v. spectral data. The electronic spectra suggest distorted octahedral geometry for all the picoline adducts. E.s.r. g values lie between 2.251–2.286 at l.n.t. All the adducts undergo a quasi-reversible one-electron reduction in the range +0.47 to +0.51 V versus s.c.e., attributable to the CuIII/CuII redox couple. The electron transfer is much faster in the semicarbazone complexes than in the thiosemicarbazone complexes. All adducts showed increased nuclease activity in the presence of oxidant; the nuclease activity is compared with that of the parent copper(II) complexes.  相似文献   

5.
A series of conducting mixed-metallic coordination polymers: Cu2Pb(SCN)4, CuPb(SeCN)4, CuII 0.50CuIPb (SCN·SeCN)2, CuAg(SCN)2, CuAg(SeCN)2 and CuAg(SCN·SeCN) have been synthesized by the reaction of Cu and PbII or AgInitrates with KSCN or KSeCN, or both KSCN and KSeCN in H2O. Of significance are the aerobic reactions which yield heterometallic complexes viaoxidation of SCN and SeCN into (SCN)2 and (SeCN)2 followed by quantitative reduction of CuII into CuI; in the case of CuPb(SeCN)4 reduction of CuII into CuI is not observed, while in CuII 0.50CuIPb(SCN·SeCN)2, CuII is partially reduced to CuI. These compounds have been characterized by elemental (C, N, S and Se) analyses, magnetic moment measurements, relevant spectroscopies (i.r., far i.r., Raman, u.v.–vis. and e.p.r.), powder X-ray diffraction pattern and conductivity technique. The v(CN) vibrations in 2162–2087cm–1 and far i.r. bands (500–100cm–1) corroborated by Raman bands are conclusive of the bridging (N, S/Se) mode and metal-NCS and metal-SCN/SeCN bonding respectively in the complexes. Room temperature magnetic moment, electronic absorption spectra and e.p.r. active/silent nature confirm the oxidation state of copper in these solids. Room temperature compressed pellet conductivities rt, 10–9to 10–7Scm–1 with activation energies, E a=0.19–0.25eV and increase in the conductivity with increase in temperature in the 305–423K, range and decrease in conductivity with decrease in temperature in the 295–200K range, show their semiconductor properties.  相似文献   

6.
Summary New complexes ofN-2-picolyl-N -phenylthiourea (HPPT) have been prepared employing a number of different divalent metal ion salts. The resultant CoII, NiII, and CuII complexes, which generally involve coordination of HPPT, except for the CuII halides which have a deprotonated ligand, have been characterized by partial elemental analysis, molar conductivity and spectral (i.r., u.v.-vis., and e.s.r.) studies. HPPT is an NN bidentate ligand while the deprotonated form serves as an NNS bridging tridentate ligand. The complexes undergo partial or total decomposition in the solvents in which they are soluble. The compounds [Cu(HPPT)2X2] have resolved g features in their powder spectra indicating that magnetic dilution has occurred.On leave from Mansoura University, Mansoura, Egypt.  相似文献   

7.
We describe the synthesis, characterization and electrochemistry of a new family of peripherally functionalised vic-dioxime, 5,6-bis-(hydroxyimino)-1,2,9,10-hydroxy-4,7-dithiadecane (LH2), with bis-(thiopropandiol) moieties attached to the oxime. Thiopolyalcohol groups containing two different heteroatoms (—S— and —O—) serve as weak exocyclic binding sites for Pd+2 and Ag+ ions. Novel mononuclear (LH)2M, (M = NiII, CuII, CoII, MnII and FeII), homodinuclear (LH)2(UO2)2(OH) and heterotrinuclear (LH)2MM2 (M = NiII and M = PdII and AgI) species have been obtained with the metal:ligand ratios of 1:2, 2:2, and 3:2 respectively. Metal ions coordinate through N,N of the oxime and S,O donor sites of the peripherally attached groups in the presence of the base. The heterotrinuclear complexes were prepared by the interaction of the mononuclear complex, (LH)2Ni, with Pd(C5H5)2 and AgNO3 in an appropriate solvent. The complexes were characterized by elemental analysis, 1H-n.m.r., u.v.–vis. spectroscopy, FT-IR., and by f.a.b-m.s. The redox properties of the complexes were studied by cyclic voltammetry.  相似文献   

8.
A novel vic-dioxime, 1,2 dihydroxyimino-1-p-tolyl-3-aza-6-morpholine heptane (LH2) was prepared by reacting anti-p-tolylchloroglyoxime with 4-(3-aminopropyl)morpholine in absolute THF. Mononuclear complexes with a metal–ligand ratio of 1:2 were prepared using CoII, CuII and NiII salts. The ligand and its complexes were characterized by elemental analyses, FT-IR, u.v.–vis., 1H- and 13C-n.m.r. spectra, magnetic susceptibility measurements, thermogravimetric analyses (t.g.a.), and by cyclic voltammetry.  相似文献   

9.
A series of asymmetric heterobimetallic complexes of the type [LMLSn]Cl and [LMLSn]Cl2, where L = ethylene diamine, M = MnII, CoII, NiII and CuII, M = CrIII and FeIII and L = 1-tryptophan and 1-valine, have been synthesized and characterized by elemental analyses, u.v.–vis., i.r., e.p.r., n.m.r., cyclic voltammetry and conductivity measurements. The CoIII analogue of these complexes was characterized by two dimensional n.m.r. COSY data. The kinetics of oxygen binding with the complex [C15H23N4O2SnCo]Cl has also been studied. The kinetic data proves that CoII of a coordinated molecule participates in the rate-determining step of the dioxygen binding process. The plots of the pseudo-first-order rate k obs versus [O2] are linear passing through an intercept. The electrochemical behaviour of [C15H23N4O2SnCo]2+ and [C15H23N4O2SnCu]+ was monitored by cyclic voltammetry. Comparison of the electrochemical properties of [CoIIISnIV]2+ and [CuIISnIV]+ reveal that, in both the species, one electron transfer reaction takes place. For the [CoIIISnIV]2+ species E 0 = 0.272 and –1.1 V and for the [CuIISnIV]+ species E 0 = 0.078 and –0.300 V values were obtained, respectively.  相似文献   

10.
Several new CuII complexes, having positive reduction potentials in an in situmanner, were synthesized by reaction of the Knoevenagel condensate, 4-salicylidene-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (from curcumin) with 4-X-anilines and CuCl2. The solution electronic spectra of these complexes show intense absorption around 530 nm with unusual high extinction values (, 1600--3600 m-1 cm-1) due to the low symmetry L--d (Cu) LMCT transition. The e.s.r. spectral features with g || > g || > 2.0 having four g || values and a broadening of the g ||component with moderately low A || (110 × 10-4 cm-1) also suggest a lower symmetry around CuII. The cyclic voltammetric studies of the CuII complexes in MeCN show a positive reduction potential (E pc=502--138 mV) with high peak-to-peak separation (E p=87--335 mV). The higher and low A ||values together with positive reduction potentials for these CuII complexes suggest that they can mimic the functional properties of blue copper proteins, but have poor redox stability.  相似文献   

11.
Summary Anionic complexes [UO2(1, 1-dithiolate)2]2– interact strongly with transition metal ions to yield a new class of dithiolato-bridged heterobimetallic complexes MUO2(1, 1-dithiolate)2 (M=CoII, NiII, CuII, ZnII or PbII, 1, 1-dithiolate = isomaleonitrile dithiolate (i-MNT2–) and trithiocarbonate (CS 3 2– )). (Et4N)2[UO2(i-MNT)2] and (Et4N)2[UO2(CS3)2] have also been prepared. The complexes have been characterized by elemental analysis, i.r., u.v.-vis. and e.s.r. spectral studies. The heterobimetallic complexes are non-electrolytic, whereas (Et4N)2-[UO2 (i-MNT)2] and (Et4N)2[UO2(CS3)2] are 21 electrolytes. The i.r. data indicate symmetrical bidentate bridging behaviour for the dithiolate ligands. Magnetic moments, electronic spectra and e.s.r. studies are commensurate with a square planar environment around CoII, NiII and CuII.  相似文献   

12.
The design, synthesis and coordination of a novel multisite vic-dioxime compound, LH2, containing flexible pyridine substituents and aminophenylsulfanyl moieties on the periphery, facilitating solubility in water as pyridinium hydrochloride salt are described. LH2 was prepared by the reaction between 2-(2-pyridylethylamino)-benzenethiol and (E,E)-dichloroglydioxime. Mononuclear [(E,E)M] (M=NiII, CuII, CoII, FeII and MnII) and dinuclear uranyl (UO2 II) complexes of LH2 were isolated and characterized with metal:ligand ratios of 1:2 and 2:2, respectively. The reaction of Na2PdCl4·3H2O and AgNO3 in DMF with the mononuclear complex, (LH)2Ni, resulted in the formation of the heterotrinuclear complexes [Pd2Ni(LH)2]Cl4 and [Ag2Ni(LH)2](NO3)2. The complexes were characterized by elemental analysis, 1H-n.m.r., u.v.--vis. spectroscopy, i.r., and MS (LSIMS). The redox properties of the complexes were studied by cyclic voltammetry.  相似文献   

13.
Neutral tetradentate chelate complexes of CuII, NiII, CoII, MnII, ZnII and VOII have been prepared in EtOH using Schiff bases derived from acetoacetanilido-4-aminoantipyrine and 2-aminophenol/2-aminothiophenol. Microanalytical data, magnetic susceptibility, i.r., u.v.–vis., 1H-n.m.r. and e.s.r. spectral techniques were used to confirm the structures of the chelates. Electronic absorption and i.r. spectra of the complexes suggest a square-planar geometry around the central metal ion, except for VOII and MnII complexes which have square-pyramidal and octahedral geometry respectively. The cyclic voltammetric data for the CuII complexes in MeCN show two waves for copper(II) copper(III) and copper(II) copper(I) couples, whereas the VOII complexes in MeCN show two waves for vanadium(IV) vanadium(V) and vanadium(IV) vanadium(III) couples. The e.s.r. spectra of the CuII, VOII and MnII complexes were recorded in DMSO solution and their salient features reported. The in vitro antimicrobial activity of the investigated compounds was tested against the microorganisms such as Salmonella typhi, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus subtilis, Shigella flexneri, Pseudomonas aeruginosa, Aspergillus niger and Rhizoctonia bataicola. Most of the metal chelates have higher antimicrobial activity than the free ligands.  相似文献   

14.
New mixed ligand complexes of benzoyldithiocarbazate (H2BDT) have been synthesized and characterized by elemental analyses, spectral studies (i.r., u.v.–vis., mass), thermal analysis and electrical conductivity measurements. The complexes have the general formulae: [M2(BDT)(OX)2] · xH2O; [Co2(BDT)(OX)2(H2O)4]; [M(HBDT)(OX)-(H2O)], [Ni(BDT)(py)2] n and [Ni(BDT)(L)] n where M = MnII, NiII and CuII; BDT = dithiocarbazate dianion; OX = 8-hydroxyquinolinate; x = 1 or 2; M = ZnII or CdII; HBDT = dithiocarbazate anion and L = 2,2-bipyridyl or 1,10-o-phenanthroline. For the [M2(BDT)(OX)2] · xH2O, [Co2(BDT)(OX)2(H2O)4], [Ni(BDT)(py)2] n and [Ni(BDT)(L)] n complexes, benzoyldithiocarbazate acts as a dibasic-tetradentate ligand in the enol form via the enolic oxygen, the hydrazide nitrogens and the thiolate sulphur, while it acts as a monobasic-tridentate ligand in the keto form in the [M(HBDT)(OX)(H2O)] complexes. The thermal behaviour of the complexes has been studied by t.g.–d.t.g. techniques. Kinetic parameters of the thermal decomposition process have been computed by Coats–Redfern and Horowitz–Metzger methods. It is obvious that the thermal decomposition in the complexes occurs directly at the metal–ligand bonds except for the ZnII and CdII complexes in which decomposition seems to be at a point in the benzoyldithiocarbazate moiety. From the calculated kinetic data it can be concluded that the dehydration processes in all complexes have been described as phase-boundary controlled reactions. The activation energy values reveal that the thermal stabilities of the homobimetallic complexes lie in the order: MnII < NiII < CoII, while the monomeric CdII complex has more enhanced thermal stability than the ZnII complex.  相似文献   

15.
A new potential tetradentate ligand, N-nicotinoyl-N-2-furanthiocarbohydrazide (H2Nfth), and its complexes with VOIV, MnII, FeII,III, CoII, NiII, CuII and ZnII have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, u.v.–vis, i.r., n.m.r., ES+ and FAB mass spectral data. The room temperature e.s.r spectra of the VOIV and FeIII complexes yield g values, characteristic of octahedral complexes. The Mössbauer spectra of [Fe(HNfth)2] and [Fe2(Nfth)3] at room temperature and at 78 K suggest the presence of high-spin iron(II) and iron(III), respectively. The complexes are electrically insulating at room temperature, however, their conductivities increase as the temperature increases from 333–383 K, with a band gap of 0.46–0.77 eV, indicating their semiconducting behaviour. H2Nfth and its soluble complexes have been screened against several bacteria and fungi.  相似文献   

16.
Complexes of CuII, NiII, CoII and FeIII with Schiff-bases derived by condensing o-aminophenol and ethanolamine with dibenzoylmethane, benzoylacetone, acetylacetone and thenoyltrifluoroacetone have been prepared and characterized by elemental analysis, electrical conductivity, magnetic moment, d.t.a. and t.g.a. measurements, i.r., u.v.–vis., e.s.r. and Mössbauer spectra. All the complexes are non-electrolytes. Those with 1:2 metal:ligand ratios have an octahedral or distorted octahedral environment. Square-planar, Td or D2d structures have been proposed for the 1:1 complexes. The Mössbauer spectrum of the FeIII complex confirms its high-spin octahedral stereochemistry.  相似文献   

17.
Summary New metal complexes [M(NNNS)X] (M = NiII, CuII, ZnII and CdII; NNNS = anion of the quadridentate ligands formed from S-methyl--N-(2-aminophenyl)-methylenedithiocarbazate and pyridine-2-aldehyde or 6-methylpyridine-2-aldehyde; X = Cl, NCS, NO3 or I) and [Co(NNNS)Cl2]·2H2O have been prepared and characterized by elemental analysis and conductance measurements. Magnetic and spectroscopic evidence support a five-coordinate structure for [M(NNNS)X] (M = NiII, CuII, ZnII and CdII; X = Cl, NCS) and a squareplanar structure for [Ni(NNNS)]X (X = NO3 or I). The [Co(NNNS)Cl3]·2H2O complex is low-spin and octahedral. The Schiff bases and some of their metal complexes were tested against three pathogenic fungi, Alternaria alternata, Curvularia geniculata and Fusarium palidoroseum. The metal complexes are less fungitoxic than the free ligands.  相似文献   

18.
Summary A thermodynamic study of CuII–MII-citrate (MII=NiII, ZnII or CdII) ternary systems has been performed by means of potentiometric measurements of hydrogen ion concentration at different temperatures (10, 25, 35 and 45°C) and at I=0.1 mol dm–3 (KNO3).The different binary and ternary systems involved have been further characterized by visible spectra and by calculating the spectra ( versus ) of all the CuII complexes.The thermodynamic data suggest strong entropic stabilization for the species under discussion. As regards the visible spectral characteristics of CuII(d-d transitions), the substitution of one CuII ion in the dimer [Cu2(cit)2H–2]4– by NiII or ZnII to form heterobinuclear [CuM(cit)2H–2]4– complexes, gives rise to a change in the visible spectrum.  相似文献   

19.
A new series of 14–16-membered hexaazamacrocyclic complexes [ML1X2] and [ML2X2] (M = CoII, NiII, CuII and ZnII; X = Cl or NO3) have been synthesized by template condensation of phenylenediamine, primary diamines and formaldehyde solution 35% in MeOH and have been characterized by i.r., 1H-n.m.r., e.p.r., and u.v. spectroscopy as well as by magnetic susceptibility and conductivity measurements. An octahedral geometry has been suggested for all the complexes.  相似文献   

20.
Two new macrocyclic ligands 1,4,7,9,12-pentaaza-10,11-dioxo-8,9,12,13-bis-(1-oxo-3-thio-2-hydropyrimidine)-trideca-7,13-diene, (L1) and 1,4,7,9,12-pentaaza-10,12-dioxo-8,9,13,14-bis-(1-oxo-3-thio-2-hydropyrimidine)-tetradeca-7,14-diene, (L2) and their complexes with CrIII, MnII, FeIII, CoII, NiII, CuII and ZnII have been synthesized, and characterized by elemental analysis, i.r., 1H-n.m.r., e.p.r., u.v.–vis. spectroscopy, magnetic susceptibility and conductance measurements. The conductivity measurements suggest that the complexes of divalent metal ions are 1:1 electrolytes whereas the trivalent metal ions are non-electrolytes. On the basis of electronic spectra and magnetic moment measurements the CrIII and FeIII complexes are octahedral, while the divalent metal complexes are tetrahedral except for the NiII and CuII complexes which are proposed to have square planar geometry. All the ligands and their complexes have been screened against gram-positive bacteria Staphylococcus aureus and gram-negative bacteria E. coli. The results show that they inhibit the growth of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号