首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the preemptive scheduling of n independent jobs on m unrelated machines to minimize the makespan. Preemptive schedules with at most 2m–3 preemptions are built, which are optimal when the maximal job processing time is no more than the optimal schedule makespan. We further restrict the maximal job processing time and obtain optimal schedules with at most m–1 preemptions. This is better than the earlier known best bound of 4m 2–5m+2 on the total number of preemptions. Without the restriction on the maximal job processing time, our (2m–3)-preemptive schedules have a makespan which is no more than either of the following two magnitudes: (a) the maximum between the longest job processing time and the optimal preemptive makespan, and (b) the optimal nonpreemptive makespan. Our (m–1)-preemptive schedules might be at most twice worse than an optimal one.  相似文献   

2.
The generalized assignment problem can be viewed as the following problem of scheduling parallel machines with costs. Each job is to be processed by exactly one machine; processing jobj on machinei requires timep ij and incurs a cost ofc ij ; each machinei is available forT i time units, and the objective is to minimize the total cost incurred. Our main result is as follows. There is a polynomial-time algorithm that, given a valueC, either proves that no feasible schedule of costC exists, or else finds a schedule of cost at mostC where each machinei is used for at most 2T i time units.We also extend this result to a variant of the problem where, instead of a fixed processing timep ij , there is a range of possible processing times for each machine—job pair, and the cost linearly increases as the processing time decreases. We show that these results imply a polynomial-time 2-approximation algorithm to minimize a weighted sum of the cost and the makespan, i.e., the maximum job completion time. We also consider the objective of minimizing the mean job completion time. We show that there is a polynomial-time algorithm that, given valuesM andT, either proves that no schedule of mean job completion timeM and makespanT exists, or else finds a schedule of mean job completion time at mostM and makespan at most 2T. Research partially supported by an NSF PYI award CCR-89-96272 with matching support from UPS, and Sun Microsystems, and by the National Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research, through NSF grant DMS-8920550.Research supported in part by a Packard Fellowship, a Sloan Fellowship, an NSF PYI award, and by the National Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research, through NSF grant DMS-8920550.  相似文献   

3.
In this paper we study multiprocessor and open shop scheduling problems from several points of view. We explore a tight dependence of the polynomial solvability/intractability on the number of allowed preemptions. For an exhaustive interrelation, we address the geometry of problems by means of a novel graphical representation. We use the so-called preemption and machine-dependency graphs for preemptive multiprocessor and shop scheduling problems, respectively. In a natural manner, we call a scheduling problem acyclic if the corresponding graph is acyclic. There is a substantial interrelation between the structure of these graphs and the complexity of the problems. Acyclic scheduling problems are quite restrictive; at the same time, many of them still remain NP-hard. We believe that an exhaustive study of acyclic scheduling problems can lead to a better understanding and give a better insight of general scheduling problems. We show that not only acyclic but also a special non-acyclic version of periodic job-shop scheduling can be solved in polynomial (linear) time. In that version, the corresponding machine dependency graph is allowed to have a special type of the so-called parti-colored cycles. We show that trivial extensions of this problem become NP-hard. Then we suggest a linear-time algorithm for the acyclic open-shop problem in which at most m−2 preemptions are allowed, where m is the number of machines. This result is also tight, as we show that if we allow one less preemption, then this strongly restricted version of the classical open-shop scheduling problem becomes NP-hard. In general, we show that very simple acyclic shop scheduling problems are NP-hard. As an example, any flow-shop problem with a single job with three operations and the rest of the jobs with a single non-zero length operation is NP-hard. We suggest linear-time approximation algorithm with the worst-case performance of ( , respectively) for acyclic job-shop (open-shop, respectively), where (‖ℳ‖, respectively) is the maximal job length (machine load, respectively). We show that no algorithm for scheduling acyclic job-shop can guarantee a better worst-case performance than . We consider two special cases of the acyclic job-shop with the so-called short jobs and short operations (restricting the maximal job and operation length) and solve them optimally in linear time. We show that scheduling m identical processors with at most m−2 preemptions is NP-hard, whereas a venerable early linear-time algorithm by McNaughton yields m−1 preemptions. Another multiprocessor scheduling problem we consider is that of scheduling m unrelated processors with an additional restriction that the processing time of any job on any machine is no more than the optimal schedule makespan C max *. We show that the (2m−3)-preemptive version of this problem is polynomially solvable, whereas the (2m−4)-preemptive version becomes NP-hard. For general unrelated processors, we guarantee near-optimal (2m−3)-preemptive schedules. The makespan of such a schedule is no more than either the corresponding non-preemptive schedule makespan or max {C max *,p max }, where C max * is the optimal (preemptive) schedule makespan and p max  is the maximal job processing time. E.V. Shchepin was partially supported by the program “Algebraical and combinatorial methods of mathematical cybernetics” of the Russian Academy of Sciences. N. Vakhania was partially supported by CONACyT grant No. 48433.  相似文献   

4.
《Optimization》2012,61(12):1493-1517
The flow-shop minimum-length scheduling problem with n jobs processed on two machines is addressed where processing times are uncertain: lower and upper bounds for the random processing time are given before scheduling, but its probability distribution between these bounds is unknown. For such a problem, there often does not exist a dominant schedule that remains optimal for all possible realizations of the job processing times, and we look for a minimal set of schedules that is dominant. Such a minimal dominant set of schedules may be represented by a dominance digraph. We investigate useful properties of such a digraph.  相似文献   

5.
The paper deals with the m-machine permutation flow shop scheduling problem in which job processing times, along with a processing order, are decision variables. It is assumed that the cost of processing a job on each machine is a linear function of its processing time and the overall schedule cost to be minimized is the total processing cost plus maximum completion time cost. A algorithm for the problem with m = 2 is provided; the best approximation algorithm until now has a worst-case performance ratio equal to . An extension to the m-machine (m ≥2) permutation flow shop problem yields an approximation algorithm with a worst-case bound equal to

, where is the worst-case performance ratio of a procedure used, in the proposed algorithm, for solving the (pure) sequencing problem. Moreover, examples which achieve this bound for = 1 are also presented.  相似文献   

6.
We consider the following on-line scheduling problem. We have to schedulen independent jobs, wheren is unknown, onm uniform parallel machines so as to minimize the makespan; preemption is allowed. Each job becomes available at its release date, and this release date is not known beforehand; its processing requirement becomes known at its arrival. We show that if only a finite number of preemptions is allowed, there exists an algorithm that solves the problem if and only ifs i–1/si si/si+1 for alli = 2,,m – 1, wheres i denotes theith largest machine speed. We also show that if this condition is satisfied, then O(mn) preemptions are necessary, and we provide an example to show that this bound is tight. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

7.
We deal with the following scheduling problem: a finite set of jobs is given and each job consists in the execution of an infinite number of tasks. A task is a sequence of operations and each operation requires a specific machine. A machine can process only one operation at a time and preemption is not allowed. Performance measures of the processing system involve fixing a time horizon T, counting the number of tasks completed within T for each job and maximizing a specified function of these numbers to estimate the throughput of the schedule. Whilst computing the throughput for a given T is in general an extremely difficult problem, it is shown in this paper that the limit, as T tends to infinity, of the average throughput (i.e. the throughput divided by T) can be easily computed via Linear Programming under fairly mild conditions. This quantity, which may be called the asymptotic throughput, can be used to assess a bound on performance measures of real systems. Buffers play a crucial role and buffer sizes can be taken care of in assessing the system performance. Mathematics Subject Classification (2000):90B35, 90C05, 90C27, 90C90  相似文献   

8.
In this paper we consider the problem of scheduling n jobs on a single batch processing machine in which jobs are ordered by two customers. Jobs belonging to different customers are processed based on their individual criteria. The considered criteria are minimizing makespan and maximum lateness. A batching machine is able to process up to b jobs simultaneously. The processing time of each batch is equal to the longest processing time of jobs in the batch. This kind of batch processing is called parallel batch processing. Optimal methods for three cases are developed: unbounded batch capacity, b > n, with compatible job groups and bounded batch capacity, b  n, with compatible and non compatible job groups. Each job group represents a different class of customers and the concept of being compatible means that jobs which are ordered by different customers are allowed to be processed in a same batch. We propose an optimal method for the problem with incompatible groups and unbounded batches. About the case when groups are incompatible and bounded batches, our proposed method is considered as optimal when the group with maximum lateness objective has identical processing times. We regard this method, however, as a heuristic when these processing times are different. When groups are compatible and batches are bounded we consider another problem by assuming the same processing times for the group which has the maximum lateness objective and propose an optimal method for this problem.  相似文献   

9.
The paper surveys the complexity results for job shop, flow shop, open shop and mixed shop scheduling problems when the number n of jobs is fixed while the number r of operations per job is not restricted. In such cases, the asymptotical complexity of scheduling algorithms depends on the number m of machines for a flow shop and an open shop problem, and on the numbers m and r for a job shop problem. It is shown that almost all shop-scheduling problems with two jobs can be solved in polynomial time for any regular criterion, while those with three jobs are NP-hard. The only exceptions are the two-job, m-machine mixed shop problem without operation preemptions (which is NP-hard for any non-trivial regular criterion) and the n-job, m-machine open shop problem with allowed operation preemptions (which is polynomially solvable for minimizing makespan).  相似文献   

10.
Most papers in scheduling research have treated individual job processing times as fixed parameters. However, in many practical situations, a manager may control processing time by realloeating resources. In this paper, authors consider a machine scheduling problemwith controllable processing times. In the first part of this paper, a special case where the pro-cessing times and compression costs are uniform among jobs is discussed. Theoretical results are derived that aid in developing an O(n^2) algorithm to slove the problem optimally. In the second part of this paper, authors generalize the discussion to general case, An effective heuristic to the genera/ problem will be presented.  相似文献   

11.
In this paper,we investigate the i-preemptive scheduling on parallel machines to maximize the minimum machine completion time,i.e.,machine covering problem with limited number of preemptions. It is aimed to obtain the worst case ratio of the objective value of the optimal schedule with unlimited preemptions and that of the schedule allowed to be preempted at most i times. For the m identical machines case,we show the worst case ratio is 2m.i.1 m,and we present a polynomial time algorithm which can guarantee the ratio for any 0 ≤ i ≤ m. 1. For the i-preemptive scheduling on two uniform machines case,we only need to consider the cases of i = 0 and i = 1. For both cases,we present two linear time algorithms and obtain the worst case ratios with respect to s,i.e.,the ratio of the speeds of two machines.  相似文献   

12.
We study a coordinated scheduling problem of production and transportation in which each job is transported to a single batching machine for further processing. There are m vehicles that transport jobs from the holding area to the batching machine. Each vehicle can transport only one job at a time. The batching machine can process a batch of jobs simultaneously where there is an upper limit on the batch size. Each batch to be processed occurs a processing cost. The problem is to find a joint schedule of production and transportation such that the sum of the total completion time and the total processing cost is optimized. For a special case of the problem where the job assignment to the vehicles is predetermined, we provide a polynomial time algorithm. For the general problem, we prove that it is NP-hard (in the ordinary sense) and present a pseudo-polynomial time algorithm. A fully polynomial time approximation scheme for the general problem is obtained by converting an especially designed pseudo-polynomial dynamic programming algorithm.  相似文献   

13.
The following single machine scheduling problem is studied. A partition of a set of n jobs into g groups on the basis of group technology is given. The machine processes jobs of the same group contiguously, with a sequence independent setup time preceding the processing of each group. The setup times and the job processing times are controllable through the allocation of a continuously divisible or discrete resource to them. Each job uses the same amount of the resource. Each setup also uses the same amount of resource, which may be different from that for the jobs. Polynomial-time algorithms are constructed for variants of the problem of finding an optimal job sequence and resource values so as to minimize the total weighted job completion time, subject to given restrictions on resource consumption. The algorithms are based on a polynomial enumeration of the candidates for an optimal job sequence and solving the problem with a fixed job sequence by linear programming. This research was supported in part by The Hong Kong Polytechnic University under grant number G-T246 and the Research Grants Council of Hong Kong under grant number PolyU 5191/01E. In addition, the research of M.Y. Kovalyov was supported by INTAS under grant number 00-217.  相似文献   

14.
We study a multiprocessor extension of the preemptive open shop scheduling problem, where the set of processors is partitioned into processor groups. We show that the makespan minimization problem is polynomially solvable for two multiprocessor groups even if preemptions are restricted to integral times.  相似文献   

15.
A polynomial time algorithm was given by Fiala for the nonpreemptivem-processor open shop problem whenever the sum of processing times for one processor is large enough with respect to the maximal processing time. Here a special case where all processing times are from a bounded cardinality set of nonnegative integers is studied. For such a situation we give anO(nm) algorithm while the algorithm of Fiala works inO(n 2 m 3) wheren is the number of jobs.  相似文献   

16.
This paper deals with the problem of scheduling three jobs on two machines in order to minimize the makespan, when operation preemptions are forbidden and routes are fixed and may vary per job. It is shown that this problem can be solved by anO(r 4) algorithm, wherer is the maximal number of operations per job. Supported by Belarussian Fundamental Research Found, Project Φ60–242, and Deutsche Forschungsgemeinschaft, Project ScheMA  相似文献   

17.
We consider the problem of scheduling a set of dependent jobs on a single machine with the maximum completion time criterion. The processing time of each job is variable and decreases linearly with respect to the starting time of the job. Applying a uniform approach based on the calculation of ratios of expressions that describe total processing times of chains of jobs, we show basic properties of the problem. On the basis of these properties, we prove that if precedence constraints among jobs are in the form of a set of chains, a tree, a forest or a series–parallel digraph, the problem can be solved in O(n log n) time, where n denotes the number of the jobs.  相似文献   

18.
We consider a batch scheduling problem on a single machine which processes jobs with resource dependent setup and processing time in the presence of fuzzy due-dates given as follows:1. There are n independent non-preemptive and simultaneously available jobs processed on a single machine in batches. Each job j has a processing time and a due-date.2. All jobs in a batch are completed together upon the completion of the last job in the batch. The batch processing time is equal to the sum of the processing times of its jobs. A common machine setup time is required before the processing of each batch.3. Both the job processing times and the setup time can be compressed through allocation of a continuously divisible resource. Each job uses the same amount of the resource. Each setup also uses the same amount of the resource.4. The due-date of each job is flexible. That is, a membership function describing non-decreasing satisfaction degree about completion time of each job is defined.5. Under above setting, we find an optimal batch sequence and resource values such that the total weighted resource consumption is minimized subject to meeting the job due-dates, and minimal satisfaction degree about each due-date of each job is maximized. But usually we cannot optimize two objectives at a time. So we seek non-dominated pairs i.e. the batch sequence and resource value, after defining dominance between solutions.A polynomial algorithm is constructed based on linear programming formulations of the corresponding problems.  相似文献   

19.
The problem of scheduling n jobs with known process times on m identical parallel machines with an objective of minimizing weighted flow time is NP-hard. However, when job weights are identical, it is well known that the problem is easily solved using the shortest processing time rule. In this paper, we show that a generalization of the shortest processing time rule minimizes weighted flow time in a class of problems where job weights are not identical.  相似文献   

20.
We address the problem of processing a set of jobs on a single machine under random due dates with a common distribution. The processing times of the jobs are exponentially distributed random variables with means i , and the machine is subject to stochastic breakdowns governed by a Poisson process. Each job i is associated with a job-dependent weight w i . The objective is to schedule the jobs so as to minimize the expected sum of the weighted earliness and tardiness costs of all jobs, which are quadratic functions of the deviations of job completion times from the due dates. We show that the problem is NP-complete. Nevertheless, important optimality properties exist, which can be utilized to develop effective algorithms to solve the problem. Specifically, we prove that, in the case where the weights assigned to both the earliness and tardiness are symmetric, an optimal sequence for the problem must be V-shaped with respect to { i /w i }, in the sense that the sequence will first process jobs in a nonincreasing order of { i /w i } and then in a nondecreasing order of { i /w i }. In the case where asymmetric weights are assigned to the earliness and tardiness costs, the optimal sequence must also be V-shaped with respect to { i /w i }, if the due dates are exponentially distributed. Dynamic programming algorithms are proposed which can find the best V-shaped sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号