首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoelectric effects are investigated theoretically in layered conductors with a quasi-two-dimensional electron energy spectrum of arbitrary type in a strong magnetic field. It is shown that, at temperatures sufficiently low for quantization of the orbital motion of charge carriers in a magnetic field to be required, there exist giant quantum oscillations of the thermoelectric field. Thermoelectric emf is studied as a f unction of the orientation of the magnetic field with respect to the layers; experimental investigation of this function allows one to determine the velocity distribution of conduction electrons on the Fermi surface.  相似文献   

2.
We study conductance and adiabatic pumped charge and spin currents in a graphene quantum pump with Corbino geometry in the presence of an applied perpendicular magnetic field. Pump is driven by the periodic and out of phase modulations of the magnetic field and an electrostatic potential applied to the ring area of the pump. We show that Zeeman splitting, despite its smallness, suppresses conductance and pumped current oscillations at zero doping. Moreover, quite considerable spin conductance and pumped spin current are generated at low dopings due to Zeeman splitting. We find that pumped charge and spin currents increase by increasing the magnetic field, with small oscillations, until they are suppressed due to the effect of nonzero doping and Zeeman splitting.  相似文献   

3.
Magnetostriction was for the first time studied under the conditions of formation of diamagnetic domains (Condon domains). Transverse magnetostriction oscillations on a beryllium single crystalline plate oriented normally to magnetic field were measured in magnetic fields up to 7 T at temperatures down to 1.5 K. The relative amplitude of oscillations increased almost as the square of magnetic field and reached 10?5. The signal had a sawtoothed shape corresponding to alternation of homogeneous and inhomogeneous (domain) states in the region of the existence of magnetic domains. The arising of domains was accompanied by singularities in the observed signals which is explained by an anomalous increase in the compressibility coefficient of the domain state: coefficient oscillations were more than 100 times larger than the value predicted by the standard theory. The observed relation between magnetization current and deformation led us to conclude that the compressibility of the metal was fully determined by conduction electrons. Magnetostriction then exactly compensated Fermi level oscillations. The position of the Fermi level therefore remained constant under magnetic field variations. In addition, the domain wall thickness had to increase as the plate grew thicker.  相似文献   

4.
In the present work, we theoretically analyze the effect of the Fermi surface local geometry on quantum oscillations in the velocity of an acoustic wave travelling in metal across a strong magnetic field. We show that local flattenings of the Fermi surface could cause significant amplification of quantum oscillations. This occurs due to enhancement of commensurability oscillations modulating the quantum oscillations in the electron density of states on the Fermi surface. The amplification in the quantum oscillations could be revealed at fitting directions of the magnetic field.  相似文献   

5.
Oscillations of a 2D electron plasma in a transverse magnetic field have been theoretically studied taking into account spin-orbit interaction. Four branches of spin-plasmon oscillations associated with different selection rules for spin and orbital quantum numbers have been shown to appear at a small plasmon momentum in a semiclassical limit (the Fermi energy is much higher than the Landau quantum). In the quantum case (the filling factor ν is about unity), the number of branches changes from three to six depending on ν value.  相似文献   

6.
The behavior of charge and spin persistent currents in an integrable lattice ring of strongly correlated electrons with a magnetic impurity is exactly studied. Our results manifest that the oscillations of charge and spin persistent currents are similar to the ones, earlier obtained for integrable continuum models with a magnetic impurity. The difference is due to two (instead of one) Fermi velocities of low-lying excitations. The form of oscillations in the ground state is “saw-tooth”-like, generic for any multi-particle coherent one-dimensional models. The integrable magnetic impurity introduces net charge and spin chiralities in the generic integrable lattice system, which determine the initial phase shifts of charge and spin persistent currents. We show that the magnitude of the charge persistent current in the generic Kondo situation does not depend on the parameters of the magnetic impurity, unlike the (magneto)resistivity of transport currents. Received 30 January 2003 / Received in final form 12 March 2003 Published online 11 April 2003 RID="a" ID="a"e-mail: zvyagin@fy.chalmers.se  相似文献   

7.
The Fermi energy, cyclotron energy and cyclotron effective mass of degenerate electron gas in a sizeoquantized semiconductor thin film with non-parabolic energy bands are studied. The influences of quantizing magnetic field on these quantities in two-band approximation of the Kane model are investigated. It is shown that the Fermi energy oscillates in a magnetic field. The period and positions of these oscillations are found as a function of film thickness and concentration of electrons. Cyclotron energy and cyclotron effective mass are investigated as a function of film thickness in detail The results obtained here are compared with experimental data on GaAs quantum wells.  相似文献   

8.
The specific features of quantum oscillations of the magnetization in quasi-two-dimensional wide-band-gap antiferromagnetic semimetals with a low concentration of charge carriers have been considered theoretically. It has been shown that, in these systems, the Fermi energy determined from the analysis of the frequency of the de Haas–van Alphen oscillations according to the standard procedure can differ significantly from the true value. For the correct determination of the Fermi energy in the canted phase, it has been proposed to analyze quantum oscillations of the magnetization M not as a function of the inverse magnetic field 1/H, but as a function of 1/cosγ, where the angle γ characterizes the inclination angle of the magnetic field with respect to the plane of the quasi-two-dimensional semimetal.  相似文献   

9.
The effect of point defects on persistent currents in mesoscopic rings is studied in a simple tight-binding model. Using an analogy with the treatment of the critical quantum Ising chain with defects, conformal invariance techniques are employed to relate the persistent current amplitude to the Hamiltonian spectrum just above the Fermi energy. From this, the dependence of the current on the magnetic flux is found exactly for a ring with one or two point defects. The effect of an aperiodic modulation of the ring, generated through a binary substitution sequence, on the persistent current is also studied. The flux-dependence of the current is found to vary remarkably between the Fibonacci and the Thue-Morse sequences. Received: 4 March 1998 / Revised: 20 April 1998 / Accepted: 30 April 1998  相似文献   

10.
We study spectroscopically the current produced by a charged particle moving in a nanosize semiconductor quantum ring subject to a perpendicular magnetic field. Several Aharonov-Bohm oscillations are observed in the emission of a charged exciton confined in a single ring structure. The magnetic field period of the oscillations correlates well with the size of the rings.  相似文献   

11.
Relationships for the transverse magnetothermopower of a semiconductor film with parabolic potential are derived for the cases of nondegenerate statistics and strong degeneracy. It is demonstrated that, in the case of strong degeneracy, quantum levels lying below the Fermi level intersect the Fermi level with an increase in the magnetic field, which leads to jumpwise oscillations of the thermopower magnitude.  相似文献   

12.
The thin‐layer quantization procedure is used to study the physical implications due to curvature effects on a quantum dot in the presence of an external magnetic field. Among the various physical implications due to the curvature of the system, the absence of the m = 0 state is the most relevant one. This absence affects the Fermi energy and consequently the thermodynamic properties of the system. In the absence of magnetic fields, it is verified that the rotational symmetry in the lateral confinement is preserved in the electronic states of the system and its degeneracy concerning the harmonicity of the confining potential is broken. In the presence of a magnetic field, however, the energies of the electronic states in a quantum dot with curvature are greater than those obtained for a quantum dot in a flat space, and the profile of degeneracy changes when the field is varied. It is shown that the curvature of the surface modifies the number of subbands occupied in the Fermi energy. In the study of both magnetization and persistent currents, it is observed that Aharonov–Bohm‐type oscillations are present, whereas de Haas–van Alphen‐type oscillations are not well defined.  相似文献   

13.
We present quantum mechanical calculations of magnetoconductance of narrow quantum waveguides in the presence of inhomogeneous perpendicular magnetic field with the use of a model of two coupled tight-binding chains and the transfer-matrix method. The variation of the magnetoconductance with the magnetic flux φ threading one unit cell in the chains for different Fermi energies of the electrons is presented. The effect of magnetically defined ‘barriers’ on the conductance as a function of the Fermi energy is studied in detail for various samples with different magnetically structural configurations. The profile of the conductance depends on the magnitude and the relative direction of the magnetic field piercing the magnetic ‘barriers’. The behaviors of the conductance for the linear-variation and other modulation functions of the magnetic field in a finite region are shown. The abrupt change of the magnetic field in the interface between two adjacent regions causes striking oscillation structures imposed upon the conductance steps. When the magnetic field is varied smoothly (adiabatically) the oscillation structures in the conductance are substantially suppressed and smeared out and finally replaced by the rounded conductance step in the corner. The presence of a magnetically defined cavity in the waveguide leads to pronounced oscillations and the appearance of resonant dip-peak pair in the conductance.  相似文献   

14.
张颖  肖景林 《发光学报》2007,28(3):321-324
利用量子波导理论研究三臂环中的持续电流.结果表明,输运电流存在时,不含磁场且上、下臂等长的三臂环中仍可以有持续电流出现,而且上臂和下臂中的持续电流是相同的.三臂环的各臂长不等时,三个臂中的持续电流各不相同.我们还发现,即使三臂环和单环的上、下臂比值一样,两个环中的持续电流也明显不同.  相似文献   

15.
A tunnel current through a heterostructure whose barrier contains quantum rings is calculated. The plane of the rings is parallel to the barrier interface. In a magnetic field perpendicular to this plane, a tunnel current at a fixed bias experiences Aharonov-Bohm oscillations under the variation of magnetic flux through a ring; however, these oscillations are not strictly periodic.  相似文献   

16.
The role of bulk and edge currents in a two-dimensional electron gas under the conditions of the integer quantum Hall effect (IQHE) was studied by means of an inductive coupling to Hall bar geometry. From this study we conclude that the extended states at the bulk of the sample below the Fermi energy are capable of carrying a substantial amount of Hall current. For Hall bar geometry sample with a back gate we demonstrated that injected current can be pushed from one edge to another by reversing the direction of the external magnetic field.  相似文献   

17.
Shubnikov de Haas, quantum Hall effect and direct measurements of the diagonal conductivity on InGaAs/InP heterostructures have been performed on a quasi Corbino disk combining Hall bar and Corbino geometry. The temperature dependence of is studied at several minima of the magnetoresistance . A hopping conduction is observed when the Fermi level is between two Landau levels. And a low magnetic field intersubband scattering has been also noticed.The study of the transient time after illumination shows that the photoconductivity is mainly due to localized states.  相似文献   

18.
We investigate theoretically the magnetoexciton states in semiconductor concentric quantum double rings using the multi-band effective mass theory. We find that a perpendicular magnetic field can lead to oscillations in the exciton energy which appear as kinks in the magneto-photoluminescence (PL) spectra as the magnetic field increases. The spatial distribution of the exciton over the rings depends sensitively on the thicknesses of the inner and outer rings. The tunneling coupling between the inner and outer rings and the heavy-hole and light-hole mixing results in different anticrossing behaviors. Exciton can be converted into a spatially separated type-II exciton by tuning the thickness, the inner and/or outer ring radius and the magnetic field. We show that this type I–type II transition is reflected in the oscillator strength of the PL spectrum which will be the experimental signature that will provide us with information about the spatial distribution of the exciton.  相似文献   

19.
Under the conditions corresponding to tunnel-coupled edge current states in an open ring interferometer, oscillations of conductance as a function of gate voltage with two noticeably different periods are observed. The large-period oscillations are attributed to the electron tunneling between the source and drain regions via a closed edge state of the ring, when an integral number of magnetic flux quanta passes through its contour at the Fermi level. The small-period oscillations are explained by the effect of single-electron variations of the ring potential on the transparency of the barriers between the localized and delocalized edge states of the interfer-ometer.  相似文献   

20.
We investigate theoretically the magnetoexciton states in semiconductor concentric quantum double rings using the multi-band effective mass theory. We find that a perpendicular magnetic field can lead to oscillations in the exciton energy which appear as kinks in the magneto-photoluminescence (PL) spectra as the magnetic field increases. The spatial distribution of the exciton over the rings depends sensitively on the thicknesses of the inner and outer rings. The tunneling coupling between the inner and outer rings and the heavy-hole and light-hole mixing results in different anticrossing behaviors. Exciton can be converted into a spatially separated type-II exciton by tuning the thickness, the inner and/or outer ring radius and the magnetic field. We show that this type I–type II transition is reflected in the oscillator strength of the PL spectrum which will be the experimental signature that will provide us with information about the spatial distribution of the exciton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号