首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
The heterogeneous reactions of oleic acid (OL) and oleic-acid/sodium-chloride(aq) (OL/NaCl(aq)) mixture droplets with ozone are studied at two relative humidities (RH). The reactions were monitored concomitantly using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) for the organic species and UV-vis spectrometry for the ozone concentration in order to investigate reaction rate discrepancies reported in literature as well as the oxidation mechanism. The less volatile products were identified and resolved by a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). This led to identification of 13 organic molecules (up to 45 carbons). Identified products were predominantly composed by nananoic acid and azelaic acid. Our results suggest that the propagation reaction is possibly initiated by a secondary reaction such as the stabilized Criegee intermediates reacting with oleic acid. For hygroscopic properties, the ATR-IR spectra at high RH (87 +/- 5%) showed that the hydrophobic oleic acid droplets can take up water slightly when exposed to ozone. For internally mixed OL/NaCl(aq) droplets, the hygroscopic properties of the droplets upon ozone exposure were found to be complex; hygroscopic properties or the growth factors of the droplets are altered as the oxidation products of oleic acid exist concurrently with NaCl(aq). Furthermore, the concentration of ozone was monitored to examine the kinetics of the oxidation reaction. The integrated ozone profile recorded by UV-vis spectrometry showed the consumed ozone represents only 30 +/- 2% of total oleic acid and hence confirmed the existence of secondary reactions. A kinetic model was used to simulate an ozone temporal profile that could only be described if the secondary reactions were included. The discrepancy of ozone uptake coefficients according to the OL and ozone measurements as well as their atmospheric implications are herein discussed.  相似文献   

2.
The heterogeneous reactions of deposited, millimeter-sized oleic acid droplets with ozone and nitrate radicals are studied. Attenuated total reflectance infrared spectroscopy (ATR-IR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS) are used for product identification and quantification. The condensed-phase products of the ozonolysis of oleic acid droplets are 1-nonanal (30 +/- 3% carbon yield), 9-oxononanoic acid (14 +/- 2%), nonanoic acid (7 +/- 1%), octanoic acid (1 +/- 0.2%), azelaic acid (6 +/- 3%), and unidentified products. The infrared spectra show that a major fraction of the unidentified products contain an ester group. Additionally, the mass spectra show that at least some of the unidentified products have molecular weights greater than 1000 amu, which implicates a polymerization reaction. The observed steps of 172 amu (9-oxononanoic acid) and 188 amu (azelaic acid Criegee intermediate) in the mass spectra suggest that these species are the monomers in the condensed-phase polymerization reactions. 9-Oxononanoic acid is proposed to lengthen the molecular chain via secondary ozonide formation; the azelaic acid Criegee intermediate links molecules units via ester formation (specifically, alpha-acyloxyalkyl hydroperoxides). For the reaction of oleic acid with nitrate radicals, functional groups including -ONO(2), -O(2)NO(2), and -NO(2) are observed in the infrared spectra, and high molecular weight molecules are formed. Environmental scanning electron microscopy (ESEM) is employed to examine the hygroscopic properties of the oleic acid droplets before and after exposure to ozone or nitrate radical. After reaction, the droplets take up water at lower relative humidities compared to the unreacted droplets. The increased hygroscopic response may indicate that the oxidative aging of atmospheric organic aerosol particles has significant impact on radiative forcing.  相似文献   

3.
Criegee中间体气相反应热力学的G2理论计算   总被引:1,自引:0,他引:1  
Criegee intermediate is believed to play an important role in the atmospheric chemistry. Because of its short life and the difficulty in experimental study, we carried out ah initio calculations on the thermochemistry of the Criegee involving reactions in this study. Thermochemistry data of reaction enthalpies and Gibbs free energies for four different stable structures of the Criegee intermediates (singlet CH2OO ①1 A1 in C2v, triplet CH2OO ②3B1 in C2v, singlet CH2OO ③1A' in Cs and triplet CH2OO ④ in C1 symmetry) involved in some of the gas-phase reactions were calculated at the standard Gaussian-2 [G2(MP2) and G2] and a modified G2, G2(fu1)[10],levels of theory. Relative energies among those Criegees and formic acid were compared. Chemical reactions include the formation of Criegees, re-arrangement from Criegee to formic acid, dissociations (producing CH2(3B1)+O2, CH2(1A1)+O2, CO2+H2, CO2+2H, CO+H2O, OH+HCO) and the reactions between Criegee and NO/H2O. Standard equilibrium constants for some reactions were investigated and may be obtained for all of the rest reactions involved in this study by the standard Gibbs free energies. It is shown that the formation of Criegee ①-④ by ethylene and ozone, the re-arrangement from any Criegee to formic acid, the dissociation in producing CO2+O2and CO+H2O and the reactions between any Criegee and NO/H2O are all favourable thermodynamicaly. The dissociation in forming CO2+2H and OH+HCO is less favourable. While the dissociation in forming carbene (either in 3B1 or 1A1 state) is not allowed by ΔrGm? values. Standard enthalpies of formation at 298 K for the four Criegees were predicted at the G2(ful) level of theory. Each value is the average value from ten of the above reactions and they are -4.3, 74.8,98.9 and 244.6 kJ mol-1 at the G2(ful) level for Criegee ① to Criegee ④, respectively. In addition, tile standard enthalpy of formation at 298 K for HOCH2OOH is further predicted to be -315.6 kJ mol-1 at the G2(MP2) level.  相似文献   

4.
Oxidation of thin multilayered films of undecylenic (10-undecenoic) acid by gaseous ozone was investigated using a combination of spectroscopic and mass spectrometric techniques. The UV absorption spectrum of the oxidized undecylenic acid film is significantly red-shifted compared to that of the initial film. Photolysis of the oxidized film in the tropospheric actinic region (lambda > 295 nm) readily produces formaldehyde and formic acid as gas-phase products. Photodissociation action spectra of the oxidized film suggest that organic peroxides are responsible for the observed photochemical activity. The presence of peroxides is confirmed by mass-spectrometric analysis of the oxidized sample and an iodometric test. Significant polymerization resulting from secondary reactions of Criegee radicals during ozonolysis of the film is observed. The data strongly imply the importance of photochemistry in aging of atmospheric organic aerosol particles.  相似文献   

5.
The gas-phase reactions of ozone with alkenes can be significant sources of free radicals (OH, HO(2) and RO(2)) in the Earth's atmosphere. In this study the total radical production and degradation products from ethene ozonolysis have been measured, under conditions relevant to the troposphere, during a series of detailed simulation chamber experiments. Experiments were carried out in the European photoreactor EUPHORE (Valencia, Spain), utilising various instrumentation including a chemical-ionisation-reaction time-of-flight mass-spectrometer (CIR-TOF-MS) measuring volatile organic compounds/oxygenated volatile organic compounds (VOCs/OVOCs), a laser induced fluorescence (LIF) system for measuring HO(2) radical products and a peroxy radical chemical amplification (PERCA) instrument measuring HO(2) + ΣRO(2). The ethene + ozone reaction system was investigated with and without an OH radical scavenger, in order to suppress side reactions. Radical concentrations were measured under dry and humid conditions and interpreted through detailed chemical chamber box modelling, incorporating the Master Chemical Mechanism (MCMv3.1) degradation scheme for ethene, which was updated to include a more explicit representation of the ethene-ozone reaction mechanism.The rate coefficient for the ethene + ozone reaction was measured to be (1.45 ± 0.25) × 10(-18) cm(3) molecules(-1) s(-1) at 298 K, and a stabilised Criegee intermediate yield of 0.54 ± 0.12 was determined from excess CO scavenger experiments. An OH radical yield of 0.17 ± 0.09 was determined using a cyclohexane scavenger approach, by monitoring the formation of the OH-initiated cyclohexane oxidation products and HO(2). The results highlight the importance of knowing the [HO(2)] (particularly under alkene limited conditions and high [O(3)]) and scavenger chemistry when deriving radical yields. An averaged HO(2) yield of 0.27 ± 0.07 was determined by LIF/model fitting. The observed yields are interpreted in terms of branching ratios for each channel within the postulated ethene ozonolysis mechanism.  相似文献   

6.
Photoelectron resonance capture ionization (PERCI) is a soft and sensitive ionization method, based on the attachment of low-energy (<1 eV) photoelectrons to organic analyte molecules. PERCI has been developed in our laboratory for the real-time analysis of organic particles by mass spectrometry, and is employed here to monitor the heterogeneous reaction of ozone with oleic acid. Simplified identification of the reaction products is possible as a result of the soft nature of PERCI, giving predominantly the [M--H](-) ions. The major particle-phase products are identified as: 1-nonanal, nonanoic acid, 9-oxononanoic acid, and azelaic acid, consistent with proposed mechanisms. New insight into this well-studied heterogeneous reaction is gained as additional minor particle-phase products, consistent with the Criegee mechanism, are readily detected.  相似文献   

7.
The reactions of Criegee intermediates in the gas phase are reviewed. These intermediates are formed by the reaction of olefins with ozone. In the gas phase Criegee intermediates have a biradical character. Initially they are formed as vibrationally hot species. After deactivation by collision with a third body, they can participate in bimolecular reactions with aldehydes, NOx, SO2, water, and so on. Reaction mechanisms are discussed.  相似文献   

8.
In this work, we study the reaction mechanism of the CH2CHX(X?H, F, Cl) with ozone reactions, using ab initio MP2 method at 6‐311++g** basis set level. The geometric configurations of reactants, intermediates, transition states, and products were optimized, and the energies were obtained at the QCISD(T)/6‐311++G** level. The transition states and intermediates of the reactions were verified by the vibrational analysis. The results show that the ozonolysis of ethylene and its derivatives is reasonable and believable along the Criegee mechanism. The results also show that the activation energies of the controlling steps along the fluoroethylene and chloroethylene with ozone reaction pathways were lower than that along the ethylene with ozone reaction pathway. That is to say, the derivatives of ethylene have the higher activity to react with ozone and deplete the ozone layer. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

9.
Photolysis of alkene-terminated self assembled monolayers (SAM) deposited on Degussa SiO(2) nanoparticles is studied following oxidation of SAM with a gaseous ozone/oxygen mixture. Infrared cavity ring-down spectroscopy is used to observe gas-phase products generated during ozonolysis and subsequent photolysis of SAM in real time. Reactions taking place during ozonolysis transform alkene-terminated SAM into a photochemically active state capable of photolysis in the tropospheric actinic window (lambda > 295 nm). Formaldehyde and formic acid are the observed photolysis products. Photodissociation action spectra of oxidized SAM and the observed pattern of gas-phase products are consistent with the well-established Criegee mechanism of ozonolysis of terminal alkenes. There is strong evidence for the presence of secondary ozonides (1,3,4-trioxalones) and other peroxides on the oxidized SAM surface. The data imply that photolysis plays a role in atmospheric aging of primary and secondary organic aerosol particles.  相似文献   

10.
We have studied the oxidation of SO(2) to SO(3) by four peroxyradicals and two carbonyl oxides (Criegee intermediates) using both density functional theory, B3LYP, and explicitly correlated coupled cluster theory, CCSD(T)-F12. All the studied peroxyradicals react very slowly with SO(2) due to energy barriers (activation energies) of around 10 kcal/mol or more. We find that water molecules are not able to catalyze these reactions. The reaction of stabilized Criegee intermediates with SO(2) is predicted to be fast, as the transition states for these oxidation reactions are below the free reactants in energy. The atmospheric relevance of these reactions depends on the lifetimes of the Criegee intermediates, which, at present, is highly uncertain.  相似文献   

11.
Criegee biradicals, i.e., carbonyl oxides, are critical intermediates in ozonolysis and have been implicated in autoignition chemistry and other hydrocarbon oxidation systems, but until recently the direct measurement of their gas-phase kinetics has not been feasible. Indirect determinations of Criegee intermediate kinetics often rely on the introduction of a scavenger molecule into an ozonolysis system and analysis of the effects of the scavenger on yields of products associated with Criegee intermediate reactions. Carbonyl species, in particular hexafluoroacetone (CF(3)COCF(3)), have often been used as scavengers. In this work, the reactions of the simplest Criegee intermediate, CH(2)OO (formaldehyde oxide), with three carbonyl species have been measured by laser photolysis/tunable synchrotron photoionization mass spectrometry. Diiodomethane photolysis produces CH(2)I radicals, which react with O(2) to yield CH(2)OO + I. The formaldehyde oxide is reacted with a large excess of a carbonyl reactant and both the disappearance of CH(2)OO and the formation of reaction products are monitored. The rate coefficient for CH(2)OO + hexafluoroacetone is k(1) = (3.0 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1), supporting the use of hexafluoroacetone as a Criegee-intermediate scavenger. The reactions with acetaldehyde, k(2) = (9.5 ± 0.7) × 10(-13) cm(3) molecule(-1) s(-1), and with acetone, k(3) = (2.3 ± 0.3) × 10(-13) cm(3) molecule(-1) s(-1), are substantially slower. Secondary ozonides and products of ozonide isomerization are observed from the reactions of CH(2)OO with acetone and hexafluoroacetone. Their photoionization spectra are interpreted with the aid of quantum-chemical and Franck-Condon-factor calculations. No secondary ozonide was observable in the reaction of CH(2)OO with acetaldehyde, but acetic acid was identified as a product under the conditions used (4 Torr and 293 K).  相似文献   

12.
High‐level quantum‐chemical calculations have been performed to understand the key reactivity determinants of bimolecular reactions of Criegee intermediates and H2X (X=O, S, Se, and Te). Criegee intermediates are implicated as key intermediates in atmospheric, synthetic organic, and enzymatic chemistry. Generally, it is believed that the nature and location of substituents at the carbon of the Criegee intermediate play a key role in determing the reactivity. However, the present work suggests that it is not only the substitution of the Criegee intermediate, but the nature of the heteroatom in H2X that also plays a crucial role in determining the reactivity of the interaction between the Criegee intermediate and H2X. The barriers for the reactions of Criegee intermediates and H2X satisfy an inverse correlation with the bond strength of X−H in H2X, and a direct correlation with the first pKa of H2X. This heteroatom tuning causes a substantial barrier lowering of 8–11 kcal mol−1 in the Criegee reaction barrier in going from H2O to H2Te. An important implication of these results is that the reaction of the Criegee intermediate and H2S could be a source of thioaldehydes, which are important in plantery atmospheres and synthetic organic chemistry. By performing the reaction of Criegee intermediates and H2S under water or acid catalysis, thioladehydes could be detected in a hydrogen‐bonded complexed state, which is significantly more stable than their uncomplexed form. As a result, simpler aliphatic thioaldehydes could be selectively synthesized in the laboratory, which, otherwise, has been a significant synthetic challenge because of their ability to oligomerize.  相似文献   

13.
Criegee intermediates have implications as key intermediates in atmospheric, organic, and enzymatic reactions. However, their chemistry in aqueous environments is relatively unexplored. Herein, Born–Oppenheimer molecular dynamics (BOMD) simulations examine the dynamic behavior of syn ‐ and anti ‐CH3CHOO at the air–water interface. They show that unlike the simplest Criegee intermediate (CH2OO), both syn ‐ and anti ‐CH3CHOO remain inert towards reaction with water. The unexpected high stability of C2 Criegee intermediates is due to the presence of a hydrophobic methyl substituent on the Criegee carbon that lowers the proton transfer ability and inhibits the formation of a pre‐reaction complex for the Criegee–water reaction. The simulation of the larger Criegee intermediates, (CH3)2COO, syn ‐ and anti ‐CH2C(CH3)C(H)OO on the water droplet surface suggests that strongly hydrophobic substituents determine the reactivity of Criegee intermediates at the air–water interface.  相似文献   

14.
The gas-phase kinetics and energetics of the Criegee intermediate, deduced from studies of O3-alkene systems, suggest that a hydroxy-substituted Criegee intermediate probably participates in the photooxidation of formaldehyde. In contradistinction, the existing evidence suggests that the Criegee intermediate and its isomers are probably not involved in alkyldioxy disproportionation reactions. In the case of O + oxoalkane addition reactions, the Criegee intermediate and its isomers are discussed in terms of a complex equilibrium: .  相似文献   

15.
Carbonyl oxide species play a key role in tropospheric oxidation of organic molecules and in low-temperature combustion processes. In the late 1940s, Criegee first postulated the participation of carbonyl oxides, now often called "Criegee intermediates," in ozonolysis of alkenes. However, despite decades of effort, no gas phase Criegee intermediate has before been observed. As a result, knowledge of gas phase carbonyl oxide reactions has heretofore been inferred by indirect means, with derived rate coefficients spanning orders of magnitude. We have directly detected the primary Criegee intermediate, formaldehyde oxide (CH2OO), in the chlorine-initiated gas-phase oxidation of dimethyl sulfoxide (DMSO). This work not only establishes that the Criegee intermediate is formed in DMSO oxidation also but opens the possibility for explicit kinetics studies on this critical atmospheric species.  相似文献   

16.
The chemistry of the atmosphere encompasses a vast number of reactions acting on a plethora of intermediates. These reactions, occurring sequentially and in parallel, give rise to intertwined and irreducible mechanisms describing the complex chemical transformations of organic and inorganic compounds in the atmosphere. The complexity of this system is that it requires combined experimental, theoretical, and modeling approaches to elucidate the characteristics of the individual reactions, and their mutual interaction. In this review, we describe recent results from quantum chemical and theoretical kinetic studies of relevance to atmospheric chemistry. The review first summarizes the most commonly used theoretical methodologies. It then examines the VOC oxidation initiation channels by OH, O(3), NO(3) and Cl, followed by the reactions of the alkyl, alkoxy, alkylperoxy and Criegee intermediates active in the subsequent oxidation steps. Specific systems such as the oxidation of aromatics and the current state of knowledge on OH-regeneration in VOC oxidation are also discussed, as well as some inorganic reactions.  相似文献   

17.
Large amounts of volatile organic compounds (VOCs) are emitted into the atmosphere from both human and natural sources. A significant portion of VOCs would be oxidized via their reactions with atmospheric oxidants like OH, NO3, ozone, etc. The products of the oxidation reactions are often of low volatility and may condense to form secondary organic aerosols (SOA). To study the effect of VOC oxidation in aerosol formation, we are building an oxidation flow reactor system, which consists of (1) a 22-l aluminum chamber, (2) an ozone source with an ozone detector, (3) a UV-C (254 nm) lamp, (4) a photoionization detector to measure the effective VOC concentration, (5) various flow/concentration controlling apparatuses, and (6) a scanning mobility particle sizer to monitor the generated particles. Under the conditions of high UV and ozone levels, the oxidation process can be speeded up by orders of magnitude in this reactor. We hope to use this reactor: (i) to learn the “potential” mass of SOA that can be formed from a given VOC source like a traffic or industry site; (ii) to trace back the SOA source by utilizing the shortened reaction times; (iii) to learn the trends from VOC to SOA.  相似文献   

18.
Acylation reactions are ubiquitous in the synthesis of natural products and biologically active compounds. Unfortunately, these reactions often require the use of large quantities of volatile and/or toxic solvents, either for the reaction, purification or isolation of the products. Herein we describe and discuss the possibility of completely eliminating the use of organic solvents for the synthesis, purification and isolation of products resulting from the acylation of amines and other nucleophiles. Thus, utilisation of N,N′‐carbonyldiimidazole (CDI) allows efficient coupling between carboxylic acids and various nucleophiles under solvent‐free mechanical agitation, and water‐assisted grinding enables both the purification and isolation of pure products. Critical parameters such as the physical state and water solubility of the products, milling material, type of agitation (vibratory or planetary) as well as contamination from wear are analysed and discussed. In addition, original organic‐solvent‐free conditions are proposed to overcome the limitations of this approach. The calculations of various green metrics are included, highlighting the particularly low environmental impact of this strategy.  相似文献   

19.
We report vibrational sum frequency generation (SFG) spectra of glass surfaces functionalized with 1-pentene, 2-hexene, cyclopentene, cyclohexene, and a menthenol derivative. The heterogeneous reactions of ozone with hydrocarbons covalently linked to oxide surfaces serve as models for studying heterogeneous oxidation of biogenic terpenes adsorbed to mineral aerosol surfaces commonly found in the troposphere. Vibrational SFG is also used to track the C=C double bond oxidation reactions initiated by ozone in real time and to characterize the surface-bound product species. Combined with contact angle measurements carried out before and after ozonolysis, the kinetic and spectroscopic studies presented here suggest reaction pathways involving vibrationally hot Criegee intermediates that compete with pathways that involve thermalized surface species. Kinetic measurements suggest that the rate limiting step in the heterogeneous C=C double bond oxidation reactions is likely to be the formation of the primary ozonide. From the determination of the reactive uptake coefficients, we find that ozone molecules undergo between 100 and 10000 unsuccessful collisions with C=C double bonds before the reaction occurs. The magnitude of the reactive uptake coefficients for the cyclic and linear olefins studied here does not follow the corresponding gas-phase reactivities but rather correlates with the accessibility of the C=C double bonds at the surface.  相似文献   

20.
In this perspective we describe a 15 year pursuit of the Stabilized Criegee Intermediate (SCI). We have conducted several complementary experiments to measure the pressure dependence of product yields-including OH radical and ozonides-on sequences of alkene + ozone systems. In so doing we have been able to bring into gradual focus a succession of weakly bound intermediates, starting with the primary ozonide, then the SCI, and finally a vinyl hydroperoxide (VHP) product of SCI rearrangement. We have narrowed the phase space in our hunt for direct SCI observations to a range of alkene carbon numbers and system pressures, but the system continues to deliver surprises. One surprise is strong evidence that the VHP is a significant bottleneck along the reaction coordinate. These findings support the search for the SCI, build our fundamental understanding of collisional energy transfer in highly excited, multiple-well, chemically activated systems, and finally directly inform atmospheric chemistry on topics including HO(x) radical formation and reactions associated with secondary organic aerosol formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号