首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The lanthanide coordination chemistry of the new ligand 2-hydroxy-2-(1-oxy-pyridin-2-yl)-N,N-diphenyl acetamide (5) has been examined. X-ray crystal structure determinations for the free ligand 5 and for one complex, [La(5)6] (NO3)3·7H2O, have been completed and the latter reveals an unexpected bidentate chelation mode for 5 that involves the amide carbonyl oxygen atom and the 2-hydroxy oxygen atom of each ligand. The six bidentate ligands generate an icosohedral inner coordination sphere. The N-oxide oxygen atom of each ligand also hydrogen bonds with a 2-hydroxyl hydrogen atom in a neighboring ligand molecule in the same molecular unit.  相似文献   

2.
Three triorganotin(IV) complexes of composition R3SnLH (R = Me, Bu and Ph and LH = 2-[(E)-2-(4-hydroxy-3,5-dimethylphenyl)-1-diazenyl]benzoate) have been synthesized and characterized by 1H, 13C, 119Sn NMR, and IR spectroscopic techniques in combination with elemental analysis. The crystal structures of the carboxylate ligand HO2CC6H4{NN(C6H2-4-OH-3,5-(CH3)2)}-o in its neutral form and three triorganotin(IV) complexes, viz., polymeric (R3Sn[O2CC6H4{N–N(H)(C6H2-4-O-3,5-(CH3)2)}-o])n (R = Me (1) and Bu (2)) and monomeric Ph3Sn[O2CC6H4{N–N(H)(C6H2-4-O-3,5-(CH3)2)}-o] (3) complexes are reported. The polymeric complexes 1 and 2 exist as extended chains in which the LH-bridged Sn-atoms adopt a trans-R3SnO2 trigonal bipyramidal configuration with R groups in the equatorial positions and the axial sites occupied by an oxygen atom from the carboxylate ligand and the phenoxide O atom of the next carboxylate ligand. The Sn atom in complex 3 has a distorted tetrahedral geometry. In all three complexes, the carboxylate ligand is in the zwitterionic form with the phenolic proton moved to the nearby azo nitrogen atom, in contrast to the free carboxylic acid ligand which is in the azo form.  相似文献   

3.
Three triorganotin(IV) complexes of composition R3SnLH (R = Me, Bu and Ph and LH = 2-[(E)-2-(4-hydroxy-3,5-dimethylphenyl)-1-diazenyl]benzoate) have been synthesized and characterized by 1H, 13C, 119Sn NMR, and IR spectroscopic techniques in combination with elemental analysis. The crystal structures of the carboxylate ligand HO2CC6H4{NN(C6H2-4-OH-3,5-(CH3)2)}-o in its neutral form and three triorganotin(IV) complexes, viz., polymeric (R3Sn[O2CC6H4{N–N(H)(C6H2-4-O-3,5-(CH3)2)}-o])n (R = Me (1) and Bu (2)) and monomeric Ph3Sn[O2CC6H4{N–N(H)(C6H2-4-O-3,5-(CH3)2)}-o] (3) complexes are reported. The polymeric complexes 1 and 2 exist as extended chains in which the LH-bridged Sn-atoms adopt a trans-R3SnO2 trigonal bipyramidal configuration with R groups in the equatorial positions and the axial sites occupied by an oxygen atom from the carboxylate ligand and the phenoxide O atom of the next carboxylate ligand. The Sn atom in complex 3 has a distorted tetrahedral geometry. In all three complexes, the carboxylate ligand is in the zwitterionic form with the phenolic proton moved to the nearby azo nitrogen atom, in contrast to the free carboxylic acid ligand which is in the azo form.  相似文献   

4.
Reactions of 2-(1H-benzimidazol-2-yl)phenol (1) and SnPh3Cl, SnPh2Cl2 and SnCl4 were investigated. One tetracoordinated triphenyltin(IV) compound: triphenyltin-2-(1H-benzimidazol-2-yl)phenolate] (3) and its adducts: [O → Sn] dimethylsulfoxide triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (4), [O → Sn] aqua triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (5) [O → Sn] ethanol triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (6), [N → Sn] pyridine triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (7), where 1 acts as a monodentate ligand bound through the phenol oxygen, were obtained. In the pentacoordinated compounds 4-7, the tin atom has tbp geometry. The three phenyl groups are in equatorial positions, whereas the benzimidazole and the Lewis base are in apical positions. Two hexacoordinated tin compounds: diphenyltin-bis[2-(1H-benzimidazol-2-yl-κN)phenolate-κO] (8), dichlorotin-bis[2-(1H-benzimidazol-2-yl-κN)phenolate-κO] (9) bearing two bidentate ligands are reported. The coplanar ligands in 8 and 9 form six membered rings by oxygen and nitrogen coordination. The tin geometry is all-trans octahedral. In 8 the two phenyl groups, and in 9 the two chlorine atoms are perpendicular to the plane of the ligands. Compounds were identified in solution mainly by 1H, 13C and 119Sn NMR and in the solid state by X-ray diffraction analysis.  相似文献   

5.
Six copper(II) complexes with N,O-donor ligand 2-methyl-2-(2-pyridyl)-1,3-propan-diol (H2ppdo) were synthesized and characterized. Treatment of CuCl2 or Cu(OTf)2 with H2ppdo led to the formation of bis(H2ppdo) monomers [Cu(H2ppdo)2][CuCl4] (1) and [Cu(H2ppdo)2](OTf)2 (2), respectively. Both 1 and 2 are comprised of the copper atom coordinated by two ligands in an axially-compressed tetragonal geometry with the pyridyl N atoms in the axial positions and the alcohol O atoms in the equatorial plane. The treatment of 1 or 2 with Et3N produced copper(II) complexes of varying nuclearity. Treatment of 1 with excess Et3N generated two binuclear Cu(II) clusters [Cu2(Hppdo)2Cl2] (3) and [Cu2(Hppdo)2Cl2(CH3OH)2] (4), where only one alcohol OH group per ligand has been deprotonated, while similar treatment of 2 with excess Et3N afforded the trimeric copper(II) species [Cu3(Hppdo)4](OTf)2 (5). The structures of 3 and 4 are similar, with alkoxo-O ligand atoms bridging between two square pyramidal copper atoms, and the alcohol-O ligand atoms either coordinating in the axial position in 3, or uncoordinated in 4. Treatment of CuCl2 with H2ppdo and Et3N afforded the trinuclear Cu(II) complex, [Cu3(Hppdo)4]Cl2 (6). Complexes 5 and 6 are made up of one square-planar copper sandwiched between two tetragonally distorted six-coordinate Cu(Hppdo)2 moieties, where the bridging alkoxo-O atoms link the copper atoms.  相似文献   

6.
The synthesis of 1-(3-thienyl)-benzimidazol-2-ones (3 a and4), described in an earlier paper1, has been further investigated. The Na-salt of3 a is converted to a benzimidazolone substituted in position 3 (3 b). Dehydrogenation of the thiophene nucleus of3 a with chloranil yields5 a, which undergoes substitution in position 3 with Cl(CH2)2N(CH3)2 to give5 b. Monochlorination of5 a yields5 c, the structure of which is confirmed by1H-NMR-spectroscopy.5 d is obtained by reaction of the Na-salt of5 c with Cl(CH2)2N(CH3)2.   相似文献   

7.
《Tetrahedron: Asymmetry》2001,12(22):3173-3183
The sulfoxide-mediated diastereoselective Michael reaction of homochiral α-sulfinylketimines 1ad and β-substituted ene esters 2ad (Hua's reaction) was explored. Straightforward cyclization of the open-chain adducts take place under the reaction conditions to provide the 4-substituted 5-(p-tolylsulfinyl)-5,6-dehydropiperidin-2-ones 3 and 712, whose stereochemistry is formed in the prior step. Furthermore, the role of the metal ion of the aza-enolate reagents and the steric demands of the O-alkyl ester group have been examined. It seems that the anti-diastereoselectivity depends on metal chelation by the oxygen of the ester as well as the oxygen of the sulfinyl group and the nitrogen in the aza-enolate ((Z)-configuration). In addition, the synthesis of methyl l-(2S,4S)-4-methyl-6-oxopipecolate has been achieved from the suitably functionalized 2-sulfinylketimine 1a (five steps; overall yield: 53–65%).  相似文献   

8.
The reaction of N-(5-methyl-2-thienylmethylidene)-2-thiolethylamine (1) with Fe2(CO)9 in refluxing acetonitrile yielded di-(μ3-thia)nonacarbonyltriiron (2), μ-[N-(5-methyl-2-thienylmethyl)-η11(N);η11(S)-2-thiolatoethylamido]hexacarbonyldiiron (3), and N-(5-methyl-2-thienylmethylidene)amine (4). If the reaction was carried out at 45 °C, di-μ-[N-(5-methyl-2-thienylmethylidene)-η1(N);η1(S)-2-thiolethylamino]-μ-carbonyl-tetracarbonyldiiron (5) and trace amount of 4 were obtained. Stirring 5 in refluxing acetonitrile led to the thermal decomposition of 5, and ligand 1 was recovered quantitatively. However, in the presence of excess amount of Fe2(CO)9 in refluxing acetonitrile, complex 5 was converted into 2-4. On the other hand, the reaction of N-(6-methyl-2-pyridylmethylidene)-2-thiolethylamine (6) with Fe2(CO)9 in refluxing acetonitrile produced 2, μ-[N-(6-methyl-2-pyridylmethyl)-η1 (Npy);η11(N); η11(S)-2-thiolatoethylamido]pentacarbonyldiiron (7), and μ-[N-(6-methyl-2-pyridylmethylidene)-η2(C,N);η11(S)-2- thiolethylamino]hexacarbonyldiiron (8). Reactions of both complex 7 and 8 with NOBF4 gave μ-[(6-methyl-2-pyridylmethyl)-η1(Npy);η11(N);η11(S)-2-thiolatoethylamido](acetonitrile)tricarbonylnitrosyldiiron (9). These reaction products were well characterized spectrally. The molecular structures of complexes 3, 7-9 have been determined by means of X-ray diffraction. Intramolecular 1,5-hydrogen shift from the thiol to the methine carbon was observed in complexes 3, 7, and 9.  相似文献   

9.
The syntheses and structural analyses of a series of boron heterocycles derived from 2-(1H-benzimidazol-2-yl)-phenylamine (1), 2-(1H-benzimidazol-2-yl)-phenol (2), 2-(1H-benzimidazol-2-yl)-benzenedisulfide (3), 2-[3-(1,1,1,3,-tetramethyl-butyl)-phenyl]-2H-benzotriazole (4), 2-[3,5-bis-(1-methyl-1-phenylethyl)-phenyl]-2H-benzotriazole (5) and (C6H5)2BOH or BF3·OEt2 are reported. The new boron compounds: diphenyl-[2-(1H-benzimidazol-2-yl-κN)-phenylamide-κN]-boron (6), diphenyl-[2-(1H-benzimidazol-2-yl-κN)-phenolate-κO]-boron (7), diphenyl-[2-(1H-benzimidazol-2-yl-κN)-benzenethiolate-κS]-boron (8), diphenyl-[2-(2H-benzotriazol-2-yl-κN)-4-(1,1,3,3-tetramethyl-butyl)-phenolate-κO]-boron (9), diphenyl-[2-(2H-benzotriazol-2-yl-κN)-4,6-(1-methyl-1-phenylethyl)-phenolate-κO]-boron (10), difluoro-[2-(1H-benzimidazol-2-yl-κN)-phenolate-κO]-boron (11), difluoro-[2-(2H-benzotriazol-2-yl-κN)-4-(1,1,3,3-tetramethylbutyl)-phenolate-κO]-boron (12) and difluoro-[2-(2H-benzotriazol-2-yl-κN)-4,6-(1-methyl-1-phenylethyl)-phenolate-κO]-boron (13) have four fused rings, with boron included in a six-membered ring and bound to N, O or S atoms and strongly coordinated by a nitrogen atom from the imidazole or triazole rings. Their structures are zwitterionic, with a negative charge on the boron and a delocalized positive charge on the ligand. Compounds 6-12 were studied by NMR, IR, mass spectrometry, and 6-10 and 12 by X-ray diffraction analyses.  相似文献   

10.
Heteroaryl substituted analogs of antirhnoviral (A), was prepared by a convergent approach. 3-Nitrophenyl-5- bromooromethylisoxazoles 5a–b were synthesized by [3+2] cycloaddition of 3-(benzoyloxy)-propyne 2 to in situ generated arylnitrile oxides followed by deprotection of cycloadducts 3a–b and bromination of the resulting alcohols 4a–b. Coupling of 3- nitrophenyl-5-bromooromethylisoxazoles (5a–b) with 4-[5-(2-alkyl-2H-tetrazolyl)]phenols (6a–d) in N-methylpyrrolidinone under mild conditions afforded a new series of 2-alkyl-5-{4-[1-(3-nitrophenyl-5-isoxazolyl)methyloxy]phenylr}-2H-tetrazoles (7a–h) in high yields. The structures of the synthesized compounds were confirmed by their 1H NMR, Mass spectral, and Elemental Analysis data.  相似文献   

11.
Wittig reactions of 2-furaldehyde (20) [and thiophene-2-carbaldehyde (21)] with (3-guaiazulenylmethyl)triphenylphosphonium bromide (19) in ethanol containing NaOEt at 25 °C for 24 h under argon give (E)-1-(2-furyl)-2-(3-guaiazulenyl)ethylene (22E) and (E)-1-(2-thienyl)-2-(3-guaiazulenyl)ethylene (23E) in 53 and 36% yields. Similarly, Wittig reactions of 3-furaldehyde (29) [and thiophene-3-carbaldehyde (30)] with 19 under the same reaction conditions as for 20 and 21 afford (E)-1-(3-furyl)-2-(3-guaiazulenyl)ethylene (31E) and (E)-1-(3-thienyl)-2-(3-guaiazulenyl)ethylene (32E) in 32 and 46% yields. Molecular structures and characteristic properties as well as preparation of the title E (i.e., one of the geometrical isomers) forms, with a view to comparative study, are reported. Moreover, reactions of those conjugated π-electron systems with TCNE (=tetracyanoethylene) in benzene [and in DMF (=N,N-dimethylformamide)] at 25 °C for 24 h under argon yield unique products, possessing interesting molecular structures, respectively, whose characteristic properties and crystal structures are documented, also.  相似文献   

12.
Reaction of 2-(2′,6′-diethylphenylazo)-4-methylphenol (L2) with [Ir(PPh3)3Cl] afforded two organoiridium complexes 3 and 4 via C-H bond activation of an ethyl group in the arylazo fragment of the L2 ligand. In both the complexes the azo ligand binds to iridium as a dianionic tridentate C,N,O-donor. Two triphenylphosphines and a hydride (in the case of complex 3) or chloride (in the case of complex 4) are also coordinated to the metal center. A similar reaction of [Ir(PPh3)3Cl] with 2-(2′,6′-diisopropylphenylazo)-4-methylphenol (L3) yielded another organoiridium complex 5, where migration of one iso-propyl group from its original location (say, the 2′ position) to the corresponding third position (say, the 4′ position) took place through C-C bond activation. In this complex the modified azo ligand binds to iridium as a dianionic tridentate C,N,O-donor. Two triphenylphosphines and a hydride are also coordinated to the metal center. The structures of complexes 3 and 4 have been optimized through DFT calculations. The structure of complex 5 has been determined by X-ray crystallography. All the complexes show characteristic 1H NMR signals and intense transitions in the visible region. Cyclic voltammetry on all the complexes shows an oxidation within 0.66-1.10 V vs SCE, followed by a second oxidation within 1.15-1.33 V vs SCE and a reduction within −0.96 to −1.07 V vs SCE.  相似文献   

13.
Preparations of 2-(4-fluorobenzyl)-6-phenylimidazo[2,1-b][1,3,4]thiadiazole (3a) and its chlorophenyl derivative (3b) are described. Preliminary analysis was done spectroscopically by means of 1H NMR, 13C NMR spectra, mass spectra and elemental analyses. Further the structures were confirmed by X-ray crystal structure analyses. The compound (3a) has crystallized in a triclinic P-1 space group with three independent molecules in the asymmetric unit, while the compound (3b) belongs to P21/c space group with one molecule in the asymmetric unit. The molecule (3b) differs from molecule (3a) by the presence of chlorine substituent. Additionally, the imidazo-thiadiazole entity is as usual planar. Intramolecular C–H⋯N hydrogen bonding between the imidazole and the phenyl ring of the molecule can be observed in (3a) & (3b). The molecules of (3a) are linked into two dimensional supramolecular hexagonal hydrogen bonded network sustained by C–H⋯F interaction, while those of (3b) are linked by bifurcated C–H⋯N interactions. Further, the molecular packing of both the compounds is stabilized by ππ stacking interactions between the benzene and imidazo-thiadiazole ring systems.  相似文献   

14.
This study reports the synthesis, characterization and importance of a novel diethyl 2-(2-(2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)acetyl)hydrazono)malonate (MQOAHM). Two independent molecular structures of the disordered MQOAHM have been established by XRD?single?crystal analysis in a ratio of 0.596(3)/0.404(3), MQOAHM (a) and MQOAHM (b), respectively. MQOAHM was characterized by means of various spectroscopic tools ESI-MS, IR, 1H &13C NMR analyses. Density Functional Theory (DFT) method, B3LYP, 6–311++G(d,p) basis set was used to optimize MQOAHM molecule. The obtained theoretical structure and experimental structure were superimposed on each other, and the correlation between them was calculated. The Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) were created, and the energy gap between these orbitals was calculated. For analyzing intermolecular interactions, Molecular Electrostatic Potential (MEP) and Hirshfeld Surface Analysis were studied. For a fair comparative study, the two forms of the title compound were docked together with 18 approved drugs and N3 under precisely the same conditions. The disordered molecule structure's binding scores against 7BQY were ?7.0 and ?6.9 kcal/mol?1 for MQOAHM (a) and MQOAHM (b), respectively. Both the forms show almost identical superimposed structures and scores indicating that the disorder of the molecule, in this study, has no obvious effect. The high binding score of the molecule was attributed to the multi-hydrogen bond and hydrophobic interactions between the ligand and the receptor's active amino acid residues. Worth pointing out here that the aim of using the free energy in Silico molecular docking approach is to rank the title molecule compared to the wide range of approved drugs and a well-established ligand N3. The binding scores of all the molecules used in this study are ranged from ?9.9 to ?4.5 kcal/mol?1. These results and the supporting statistical analyses suggest that this malonate-based ligand merits further research in the context of possible therapeutic agents for COVID-19. Cheap computational techniques, PASS, Way2drug and ADMET, online software tools, were used in this study to uncover the title compound's potential biological activities and cytotoxicity.  相似文献   

15.
New ligand (E)-4-((dimethylamino)methyl)-2-((4,5-dimethylthiazol-2-yl)diazenyl)phenol (HDmazo) was prepared by the coupling reaction between 4,5-dimethylthiazol-2-amine and 4-((dimethylamino)methyl)phenol. Moreover, the [MCl2(HDmazo)] and [M(HDmazo)2] [MII = Pd and Pt] were prepared using the direct reaction of equivalent molar of HDmazo and Na2PdCl4 or K2PtCl4. The HDmazo and its complexes were investigated by different spectroscopic techniques. In complexes (12) HDmazo ligand behaves as bidentate style through the nitrogen of azo group and nitrogen of thiazole ring towards Pd(II) and Pt(II). Or in a bidentate fashion via the oxygen atom of the hydroxylate group and nitrogen atom of azo group as mono-anion in complexes (34). Further, the study of biological activity against four pathogenic bacteria showed that compound (3) exhibited good activity compared to other compounds. Additional the anti-tumor action against A2870 cell lines was screened, and the complexes (1) and (2) displayed good activity with 7.45 ± 0.98 µM and 13.23 ± 1.43 µM, respectively. The binding mechanism of the prepared compounds with EGFR tyrosine kinase, was investigated using molecular docking experiments.  相似文献   

16.
Conjugate additions of many organometallic reagents to 2-(p-anisylsulfinyl)-2-cycloalkenones, 2 proceed with much greater diastereoselectivity than additions to the corresponding 2-(p-tolylsulfinyl)-2-cycloalkenones, 7. Complexation of 2 with zinc dibromide followed by addition of various Grignard reagents lead, after reductive removal of the sulfoxide, to 3-substituted cycloalkanones of higher optical purity than those obtained from 7. Addition of methyltitanium triisopropoxide to 2-(p-anisylsulfnyl)-2-cyclohexenone, 2b, in the absence of zinc dibromide, proceeds with virtually complete asymmetric induction.  相似文献   

17.
The organotin(IV) compounds, [Ph3SnL1H]n · nCCl4 (1), [Me2SnL2(OH2)] (2), [nBu2SnL2] (3), [Ph2SnL2]n (4), [Ph3SnL2H]n (5) and [Ph3SnL3H]n (7) (L1 = 2-{[(2Z)-(3-hydroxy-1-methyl-2-butenylidene)]amino}phenylpropionate and L2−3 = 2-{[(E)-1-(2-hydroxyaryl)alkylidene]amino}phenylpropionate), were synthesized by treating the appropriate organotin(IV) chloride(s) with the potassium salt of the ligand in a suitable solvent, while [nBu2SnL3(OH2)] (6) was obtained by reacting the acid form of L3 (generated in situ) with nBu2SnO. These complexes have been characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of 1 and 47 were determined. The crystal structures of complexes 1, 5 and 7 reveal that the complexes exist as polymeric chains in which the L-bridged Sn-atoms adopt a trans-R3SnO2 trigonal bipyramidal configuration with R groups in the equatorial positions and the axial locations occupied by a carboxylate oxygen from the carboxylate ligand and the alcoholic or phenolic oxygen of the next carboxylate ligand in the chain. The carboxylate ligands coordinate in the zwitterionic form with the alcoholic/phenolic proton moved to the nearby nitrogen atom. A polymeric zig-zag cis-bridged chain structure is observed for 4, without considering the weak Sn⋯O interaction, the Sn-atom having a slightly distorted trigonal bipyramidal coordination geometry with the two O atoms of the tridentate amino propionate ligand in axial positions. On the other hand, the structure of 6 reveals a monomeric molecule in which the Sn-atom has a distorted octahedral coordination geometry involving the tridentate carboxylate ligand, two n-butyl ligands occupying trans-positions and one water ligand. The in vitro cytotoxic activity of triphenyltin(IV) compounds, viz., 1, 5 and 7 against WIDR, M19 MEL, A498, IGROV, H226, MCF7 and EVSA-T human tumor cell lines are also reported.  相似文献   

18.
(Z)-5-(2-(1H-Indol-3-yl)-2-oxoethylidene)-3-(aryl/alkyl-2-ylmethyl)-2-thioxothiazolidin-4-ones (7aw) have been synthesized by the Knoevenagel condensation reaction of 3-(aryl/alkyl-2-ylmethyl)-2-thioxothiazolidin-4-ones (3a–d) with suitably substituted 2-(1H-indol-3-yl)2-oxoacetaldehydes (6a–g) under microwave conditions. The thioxothiazolidin-4-ones were prepared from the corresponding aryl/alkyl amines (1a–d) and di-(carboxymethyl)-trithiocarbonyl (2). The aldehydes (6a–g) were synthesized from the corresponding acid chlorides (5a–g) using HsnBu3.  相似文献   

19.
Methyl 2[2-(3- methyl)indolyl]acetate (1a), on treatment with sodium hydride and methyl formate, gives methyl (Z) - 2[2 - (3 - methyl)indolyl] - 3 - hydroxyacrylate (2a), which is in tautomeric solvent-dependent equilibrium with methyl 2[2 - (3 - methyl)indolinylidene] - 3 - oxopropanoate (6). On reaction with phosphoryl chloride in dimethyl formamide, (1a) yields methyl (Z) - 2[2 - (3 - methyl)indolyl] - 3 - N,N - dimethylaminoacrylate (9) as expected, together with a more complex product derived from (9).  相似文献   

20.
The crystal structures of (μ-4,4-bipyridine)-di(nitrato-1-[(2-hydroxyethylimino)methyl]naphthalen-2-olocopper (I) and catena-di(μ-4,4’-bipyridine)di(μ-4,4’-bipyridine)-di(nitrato-2-[2-(hydroxyethylimino) methyl]phenolocopper)diaquacopper(II) nitrate (II) were determined. In the crystal of I, each of the two copper atoms coordinates a singly deprotonated tridentate azomethine molecule, a nitrate ion, and bipyridine, which functions as a bridge between the central atoms. The copper coordination polyhedron is a slightly distorted tetragonal pyramid with the base formed by the imine and bipyridine nitrogen atoms and the phenol and alcohol oxygen atoms. The axial site in the pyramid is occupied by the oxygen atom of the monodentate nitrate groups. In the trinuclear structure II with C2 crystal chemical symmetry, the terminal coordination unit is composed through copper coordination of monodeprotonated 2-[2-(hydroxyethylimino)methyl]phenol, bipyridine, and the nitrate anion. In the crystal, the trinuclear molecules form infinite ribbons along the z axis in which the pyridine molecules perform the bridging function. The central copper atom has an octahedral configuration formed by the nitrogen atoms of four 4,4’-bipyridine molecules and oxygen of two water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号