首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The most easily oxidized sites in DNA are the guanine bases, and major intermediates produced by the direct effect of ionizing radiation (ionization of the DNA itself) are electron deficient guanine species. By means of a radiation chemical method (gamma-irradiation of aqueous thiocyanate), we are able to produce these guanyl radicals in dilute aqueous solutions of plasmid DNA where the direct effect would otherwise be negligible. Stable modified guanine products are formed from these radicals. They can be detected in the plasmid conversion to strand breaks after a post-irradiation incubation with a DNA base excision endonuclease enzyme. If aniline compounds are also present, the yield of modified guanines is strongly attenuated. The mechanism responsible for this effect is electron donation from the aniline compound to the guanyl radical, and it is possible to derive rate constants for this reaction. Aniline compounds bearing electron withdrawing groups (e.g., 4-CF3) were found to be less reactive than those bearing electron donating groups (e.g., 4-CH3). At physiological pH values, the reduction of a guanyl radical involves the transfer of a proton as well as of an electron. The mild dependence of the rate constant on the driving force suggests that the electron is not transferred before the proton. Although the source of the proton is unclear, our observations emphasize the importance of an accompanying proton transfer in the reductive repair of oxidative damage to guanine bases which are located in a biologically active double stranded plasmid DNA substrate.  相似文献   

2.
In DNA, guanine bases are the sites from which electrons are most easily removed. As a result of hole migration to this stable location on guanine, guanyl radicals are major intermediates in DNA damage produced by the direct effect of ionizing radiation (ionization of the DNA itself and not through the intermediacy of water radicals). We have modeled this process by employing gamma irradiation in the presence of thiocyanate ions, a method which also produces single electron oxidized guanyl radicals in plasmid DNA in aqueous solution. The stable products formed in DNA from these radicals are detected as strand breaks after incubation with the FPG protein. When a phenolic compound is present in the solution during gamma irradiation, the formation of guanyl radical species is decreased by electron donation from the phenol to the guanyl radical. We have quantified the rate of this reaction for four different phenolic compounds bearing carboxylate substituents as proton acceptors. A comparison of the rates of these reactions with the redox strengths of the phenolic compounds reveals that salicylate reacts ca. 10-fold faster than its structural analogs. This observation is consistent with a reaction mechanism involving a proton coupled electron transfer, because intra-molecular transfer of a proton from the phenolic hydroxyl group to the carboxylate group is possible only in salicylate, and is favored by the strong 6-membered ring intra-molecular hydrogen bond in this compound.  相似文献   

3.
The selenite radical, SeO3-, has been found to selectively produce the cytosyl radical upon one-electron oxidation of duplex DNA. This is at first a surprising result as SeO3- can only oxidize guanine of the DNA bases, implying that the transiently formed guanyl radical cation must transpose into the neutral cytosyl radical with loss of a proton. Back oxidation to produce the neutral guanyl radical, in competition with another fixation reaction, is observed.  相似文献   

4.
Triplet state mechanism for electron transfer oxidation of DNA   总被引:2,自引:0,他引:2  
The interaction of anthraquinone-2-sulfonate with nucleotides and DNA in acetonitrile and acetonitrile water solvent mixture have been studied using KrF laser photolysis aimed at elucidation of the reaction mechanism. Laser spectroscopy directly demonstrates that the initial species from interaction of anthraquinone-2-sulfonate with nucleotides are radical cations of nucleotides and radical anion of anthraquinone-2-sulfonate. In addition, formation of ion pair from interaction of any of nucleotides with anthraquinone-2-sulfonate is synchronous with decay of triplet anthraquinone-2-sulfonate, which has provided dynamic evidence for initiation of electron transfer from DNA bases to triplet anthraquinone-2-sulfonate. Moreover, direct observation of stabilized DNA guanyl radical cation from interaction of anthraquinone-2-sulfonate with DNA has provided initial evidence for selective cleavage of DNA at guanine moiety. The solvent-separated ion pairs in acetonitrile have evidently dissociated into free ions, thereby enabling independent study of the behavior of guanyl radical cations and radical anion of anthraquinone-2-sulfonate.  相似文献   

5.
The guanyl radical or neutral guanine radical G(-H) results from the loss of a hydrogen atom (H) or an electron/proton (e/H+) couple from the guanine structures (G). The guanyl radical exists in two tautomeric forms. As the modes of formation of the two tautomers, their relationship and reactivity at the nucleoside level are subjects of intense research and are discussed in a holistic manner, including time-resolved spectroscopies, product studies, and relevant theoretical calculations. Particular attention is given to the one-electron oxidation of the GC pair and the complex mechanism of the deprotonation vs. hydration step of GC•+ pair. The role of the two G(-H) tautomers in single- and double-stranded oligonucleotides and the G-quadruplex, the supramolecular arrangement that attracts interest for its biological consequences, are considered. The importance of biomarkers of guanine DNA damage is also addressed.  相似文献   

6.
By using gamma-irradiation in the presence of thiocyanate ions, we have generated guanyl radicals in plasmid DNA. These can be detected by using an Escherichia coli base excision repair endonuclease to convert their stable end products to strand breaks. The yield of enzyme-sensitive sites is strongly attenuated by the presence of micromolar concentrations of one of a series of singly substituted phenols, and it is possible to derive bimolecular rate constants for the reduction of DNA guanyl radicals by these phenols. More strongly reducing phenols were found to react more rapidly. This electron-transfer reaction also involves a proton transfer. By comparing the expected energetics of the reaction with the observed rate constants, the electron transfer is found to be mechanistically coupled with the proton transfer.  相似文献   

7.
Irradiation of DNA with 193 nm light results in monophotonic photoionization, with the formation of a base radical cation and a hydrated electron (φP1 = 0.048–0.065). Although >50% of the photoionization events initially occur at guanine in DNA, migration of the “hole” from the other bases to guanine occurs to yield predominantly its radical cation or its deprotonated form. From sequence analysis, the data reveal that 193 nm light induces single strand breaks (ssb) in double-stranded DNA preferential 3’ to a guanine residue. However, it has previously been reported that 193 nm light yields very low yields of ssb (<2% of the yield of eaq). The distribution of these ssb at guanine is nonrandom, showing a dependence on the neighboring base moiety. The efficiency of ssb formation at nonguanine sites is estimated to be at least one order of magnitude lower. The preferred cleavage at guanine is consistent with migration and localization of the electron loss center at guanine. It is argued that singlet oxygen and the photoionized phosphate group of the sugar moiety are not major precursors to ssb. At present, the mechanisms of strand breakage are not known although a guanine radical or one of its products remain potential precursors.  相似文献   

8.
Density functional theory calculations were employed to study the stabilization process of the guanine radical cation through amino acid interactions as well as to understand the protection mechanisms. On the basis of our calculations, several protection mechanisms are proposed in this work subject to the type of the amino acid. Our results indicate that a series of three‐electron bonds can be formed between the amino acids and the guanine radical cation which may serve as relay stations supporting hole transport. In the three‐electron‐bonded, π–π‐stacked, and H‐bonded modes, amino acids can protect guanine from oxidation or radiation damage by sharing the hole, while amino acids with reducing properties can repair the guanine radical cation through proton‐coupled electron transfer or electron transfer. Another important finding is that positively charged amino acids (ArgH+, LysH+, and HisH+) can inhibit ionization of guanine through raising its ionization potential. In this situation, a negative dissociation energy for hydrogen bonds in the hole‐trapped and positively charged amino acid–Guanine dimer is observed, which explains the low hole‐trapping efficiency. We hope that this work provides valuable information on how to protect DNA from oxidation‐ or radiation‐induced damages in biological systems.  相似文献   

9.
DNA multiply charged anions stored in a quadrupole ion trap undergo one-photon electron ejection (oxidation) when subjected to laser irradiation at 260 nm (4.77 eV). Electron photodetachment is likely a fast process, given that photodetachment is able to compete with internal conversion or radiative relaxation to the ground state. The DNA [6-mer]3- ions studied here show a marked sequence dependence of electron photodetachment yield. Remarkably, the photodetachment yield (dG6 > dA6 > dC6 > dT6) is inversely correlated with the base ionization potentials (G < A < C < T). Sequences with guanine runs show increased photodetachment yield as the number of guanine increases, in line with the fact that positive holes are the most stable in guanine runs. This correlation between photodetachment yield and the stability of the base radical may be explained by tunneling of the electron through the repulsive Coulomb barrier. Theoretical calculations on dinucleotide monophosphates show that the HOMO and HOMO-1 orbitals are localized on the bases. The wavelength dependence of electron detachment yield was studied for dG63-. Maximum electron photodetachment is observed in the wavelength range corresponding to base absorption (260-270 nm). This demonstrates the feasibility of gas-phase UV spectroscopy on large DNA anions. The calculations and the wavelength dependence suggest that the electron photodetachment is initiated at the bases and not at the phosphates. This also indicates that, although direct photodetachment could also occur, autodetachment from excited states, presumably corresponding to base excitation, is the dominant process at 260 nm. Excited-state dynamics of large DNA strands still remains largely unexplored, and photo-oxidation studies on trapped DNA multiply charged anions can help in bridging the gap between gas-phase studies on isolated bases or base pairs and solution-phase studies on full DNA strands.  相似文献   

10.
Photoexcited 2-aminopurine (Ap*) is extensively exploited as a fluorescent base analogue in the study of DNA structure and dynamics. Quenching of Ap* in DNA is often attributed to stacking interactions between Ap* and DNA bases, despite compelling evidence indicating that charge transfer (CT) between Ap* and DNA bases contributes to quenching. Here we present direct chemical evidence that Ap* undergoes CT with guanine residues in duplex DNA, generating oxidative damage at a distance. Irradiation of Ap in DNA containing the modified guanine, cyclopropylguanosine (CPG), initiates hole transfer from Ap* followed by rapid ring opening of the CPG radical cation. Ring opening accelerates hole trapping to a much shorter time regime than for guanine radicals in DNA; consequently, trapping effectively competes with back electron transfer (BET) leading to permanent CT chemistry. Significantly, BET remains competitive, even with this much faster trapping reaction, consistent with measured kinetics of DNA-mediated CT. The distance dependence of BET is sharper than that of forward CT, leading to an inverted dependence of product yield on distance; at short distances product yield is inhibited by BET, while at longer distances trapping dominates, leading to permanent products. The distance dependence of product yield is distinct from forward CT, or charge injection. As with photoinduced charge transfer in other chemical and biological systems, rapid kinetics for charge injection into DNA need not be associated with a high yield of DNA damage products.  相似文献   

11.
Proton-coupled electron transfer oxidation of phenols play a prominent role in several natural processes, and one may wonder if their high efficiency is related to the possibility that the electron and proton transfer steps are concerted. The cyclic voltammetric observation of the electrochemical oxidation and reverse reaction has allowed, with the example of 2,4,6-tri-tert-butylphenol in nonbuffered aqueous media, the clear identification of a pathway in which a phenol is directly and reversibly converted into the phenoxyl radical while the generated proton is accepted by a water molecule in a concerted manner. In very basic media, a stepwise mechanism takes place in which the phenol is deprotonated by OH- and the resulting phenoxide ion rapidly oxidized into the phenoxyl radical. As the pH decreases, this pathway progressively shuts down to the advantage of the concerted pathway. The latter assignment is confirmed by the observation of a substantial H/D kinetic isotope effect. At moderately basic pH 10.5, the contributions of the two pathways are about equal and the occurrence of the two competing routes is directly visualized in the cyclic voltammetry response.  相似文献   

12.
The one-electron oxidation of duplex DNA generates a nucleobase radical cation (electron "hole") that migrates long distances by a hopping mechanism. The radical cation reacts irreversibly with H2O or O2 to form oxidation products (damaged bases). In normal DNA (containing the four common DNA bases), reaction occurs most frequently at guanine. However, in DNA duplexes that do not contain guanine (i.e., those comprised exclusively of A/T base pairs), we discovered that reaction occurs primarily at thymine and gives products resulting from oxidation of the T-C5 methyl group and from addition to its C5-C6 double bond. This surprising result shows that it is the relative reactivity, not the stability, of a nucleobase radical cation that determines the nature of the products formed from oxidation of DNA. A mechanism for reaction is proposed whereby a thymine radical cation may either lose a proton from its methyl group or H2O/O2 may add across its double bond. In the latter case, addition may initiate a tandem reaction that converts both thymines of a TT step to oxidation products.  相似文献   

13.
INTRODUCTION: Oxidative damage to DNA in vivo can lead to mutations and cancer. DNA damage and repair studies have not yet revealed whether permanent oxidative lesions are generated by charges migrating over long distances. Both photoexcited *Rh(III) and ground-state Ru(III) intercalators were previously shown to oxidize guanine bases from a remote site in oligonucleotide duplexes by DNA-mediated electron transfer. Here we examine much longer charge-transport distances and explore the sensitivity of the reaction to intervening sequences. RESULTS: Oxidative damage was examined in a series of DNA duplexes containing a pendant intercalating photooxidant. These studies revealed a shallow dependence on distance and no dependence on the phasing orientation of the oxidant relative to the site of damage, 5'-GG-3'. The intervening DNA sequence has a significant effect on the yield of guanine oxidation, however. Oxidation through multiple 5'-TA-3' steps is substantially diminished compared to through other base steps. We observed intraduplex guanine oxidation by tethered *Rh(III) and Ru(III) over a distance of 200 A. The distribution of oxidized guanine varied as a function of temperature between 5 and 35 degrees C, with an increase in the proportion of long-range damage (> 100 A) occurring at higher temperatures. CONCLUSIONS: Guanines are oxidized as a result of DNA-mediated charge transport over significant distances (e.g. 200 A). Although long-range charge transfer is dependent on distance, it appears to be modulated by intervening sequence and sequence-dependent dynamics. These discoveries hold important implications with respect to DNA damage in vivo.  相似文献   

14.
Proton-coupled electron-transfer (PCET) is a mechanism of great importance in protein electron transfer and enzyme catalysis, and the involvement of aromatic amino acids in this process is of much interest. The DNA repair enzyme photolyase provides a natural system that allows for the study of PCET using a neutral radical tryptophan (Trp(?)). In Escherichia coli photolyase, photoreduction of the flavin adenine dinucleotide (FAD) cofactor in its neutral radical semiquinone form (FADH(?)) results in the formation of FADH(-) and (306)Trp(?). Charge recombination between these two intermediates requires the uptake of a proton by (306)Trp(?). The rate constant of charge recombination has been measured as a function of temperature in the pH range from 5.5 to 10.0, and the data are analyzed with both classical Marcus and semi-classical Hopfield electron transfer theory. The reorganization energy associated with the charge recombination process shows a pH dependence ranging from 2.3 eV at pH ≤ 7 and 1.2 eV at pH(D) 10.0. These findings indicate that at least two mechanisms are involved in the charge recombination reaction. Global analysis of the data supports the hypothesis that PCET during charge recombination can follow two different mechanisms with an apparent switch around pH 6.5. At lower pH, concerted electron proton transfer (CEPT) is the favorable mechanism with a reorganization energy of 2.1-2.3 eV. At higher pH, a sequential mechanism becomes dominant with rate-limiting electron-transfer followed by proton uptake which has a reorganization energy of 1.0-1.3 eV. The observed 'inverse' deuterium isotope effect at pH < 8 can be explained by a solvent isotope effect that affects the free energy change of the reaction and masks the normal, mass-related kinetic isotope effect that is expected for a CEPT mechanism. To the best of our knowledge, this is the first time that a switch in PCET mechanism has been observed in a protein.  相似文献   

15.
Oxidation reactions triggered by low‐intensity UV photons represent a minor contribution with respect to the overwhelming pyrimidine base dimerization in both isolated and cellular DNA. The situation is totally different when DNA is exposed to high‐intensity UVC radiation under conditions where biphotonic ionization of the four main purine and pyrimidine bases becomes predominant at the expense of singlet excitation processes. The present review article provides a critical survey of the main chemical reactions of the base radical cations thus generated by one‐electron oxidation of nucleic acids in model systems and cells. These include oxidation of the bases with the predominant formation of 8‐oxo‐7,8‐dihydroguanine as the result of preferential hole transfer to guanine bases that act as sinks in isolated and cellular DNA. In addition to hydration, other nucleophilic addition reactions involving the guanine radical cation give rise to intra‐ and interstrand cross‐links together with DNA–protein cross‐links. Information is provided on the utilization of high‐intensity UV laser pulses as molecular biology tools for studying DNA conformational features, nucleic acid–protein interactions and nucleic acid reactivity through DNA–protein cross‐links and DNA footprinting experiments.  相似文献   

16.
The structural, energetic, and electronic and IR spectroscopic properties for a model of the cross-linked histidine-tyrosine (His-Tyr) residues as found in cytochrome c oxidase (CcO) are investigated by ab initio methods. The formation of a His-Tyr radical is studied by two paths: proton release followed by electron release and vice versa. The energetics for the proton/electron releases of the Tyr depend modestly on the cross-linked His substituent and, more sensitively, on the charge of the cation attached to the imino N site of the His residue. Protonation of the imino N site significantly increases the electron ionization potential and decreases the proton dissociation energy, making them competitive processes. A positive charge placed at the imino N site, whose value is scanned from zero to one, shows a continuous increase in ionization potential and a decrease in proton dissociation energy, with the +1 limit agreeing well with the protonated imino N site result, indicating a dominant electrostatic effect. The charge populations and the spin density distributions of the His-Tyr model, the radical cation formed by electron ionization, the anion formed by proton dissociation, and the final His-Tyr radical depend sensitively on the substituents, implying a modulation role on the charge transfer between the phenol and imidazole rings, especially for the charged species. His-Tyr and protonated His-Tyr exhibit differences among their respective structural isomers with consequences on their IR absorptions. Small barriers between their pseudo-cis and pseudo-trans rotamers demonstrate the relative flexibility between the two rings, and these may facilitate proton release and charge transfer. The cation effect demonstrates that the cationized cross-linked His-Tyr should be the best candidate to mimic the covalently ring-linked histidine-tyrosine structure in CcO.  相似文献   

17.
Three phenols with pendant, hydrogen-bonded bases (HOAr-B) have been oxidized in MeCN with various one-electron oxidants. The bases are a primary amine (-CPh(2)NH(2)), an imidazole, and a pyridine. The product of chemical and quasi-reversible electrochemical oxidations in each case is the phenoxyl radical in which the phenolic proton has transferred to the base, (*)OAr-BH(+), a proton-coupled electron transfer (PCET) process. The redox potentials for these oxidations are lower than for other phenols, predominately from the driving force for proton movement. One-electron oxidation of the phenols occurs by a concerted proton-electron transfer (CPET) mechanism, based on thermochemical arguments, isotope effects, and DeltaDeltaG(++)/DeltaDeltaG degrees . The data rule out stepwise paths involving initial electron transfer to form the phenol radical cations [(*)(+)HOAr-B] or initial proton transfer to give the zwitterions [(-)OAr-BH(+)]. The rate constant for heterogeneous electron transfer from HOAr-NH(2) to a platinum electrode has been derived from electrochemical measurements. For oxidations of HOAr-NH(2), the dependence of the solution rate constants on driving force, on temperature, and on the nature of the oxidant, and the correspondence between the homogeneous and heterogeneous rate constants, are all consistent with the application of adiabatic Marcus theory. The CPET reorganization energies, lambda = 23-56 kcal mol(-)(1), are large in comparison with those for electron transfer reactions of aromatic compounds. The reactions are not highly non-adiabatic, based on minimum values of H(rp) derived from the temperature dependence of the rate constants. These are among the first detailed analyses of CPET reactions where the proton and electron move to different sites.  相似文献   

18.
Intracluster proton transfer from the matrix-assisted laser desorption/ionization matrix 2,5-dihydroxybenzoic acid (DHB) to the peptide valyl-prolyl-leucine has been investigated as a function of excitation laser wavelength and power. Ionization laser power studies at 308 nm indicate that cluster ionization occurs with a two-photon dependence, whereas matrix-to-analyte proton transfer and cluster dissociation requires an additional photon. At 266 nm, two-photon absorption leads to both cluster ionization and cluster dissociation/proton transfer. A consideration of these results clearly indicates that analyte protonation occurs following ionization of the cluster to produce a radical cation matrix/analyte cluster. Mass spectral features also indicate that mixed DHB/peptide cluster ionization can occur via two-photon ionization at wavelengths as long as 355 nm. These results suggest a reduction in the ionization potential of larger mixed DHB/peptide clusters of greater than 1 eV. The reduced ionization potential seen in these clusters suggests that radical cation initiated proton transfer remains a viable mechanism for analyte protonation in matrix-assisted laser desorption/ionization at these longer wavelengths.  相似文献   

19.
Protonated base pairs were recently implicated in the context of DNA proton transfer and charge migration. The effects of protonating different sites of the guanine–cytosine (GC) base pair are studied here by using the DZP++ B3LYP density functional method. Optimized structures for the protonated GC base pair are compared with those of parent GC and the neutral hydrogenated GC radical (GCH). Proton and hydrogen‐atom additions significantly disturb the structure of the GC base pair. However, the structural perturbations arising from protonation are often less than those arising from hydrogenation of GC. Protonation of the GC base pair causes significant strengthening of the interstrand hydrogen bonds and a concomitant increase in the base dissociation energies. The adiabatic ionization potentials (AIPs), vertical ionization potentials (VIPs), and proton affinities (PAs) for the different protonation sites of the GC base pair are predicted. The N7 site of guanine is the preferred site for protonation of the GC base pair.  相似文献   

20.
No benefit from base stacking is observed for rates of electron transfer in DNA. This conclusion was drawn from experiments with a new DNA assay in which a radical cationic site, generated by strand cleavage, can be reduced by the guanine bases in the same DNA (the electron transfer is indicated by arrows in the diagram). The distance dependence of this electron transfer step is determined by the chemical yield of the reduction product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号