首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for the simultaneous determination of heavy metal ions in Chinese herbal medicine by microwave digestion and reversed-phase high-performance liquid chromatography (RP-HPLC) has been developed. The Chinese herbal medicine samples were digested by microwave digestion. Lead, cadmium, mercury, nickel, copper, zinc, and tin ions in the digested samples were pre-column derivatized with tetra-(4-chlorophenyl)-porphyrin (T4-CPP) to form the colored chelates which were then enriched by solid phase extraction with C18 cartridge and eluted from the cartridge with tetrahydrofuran (THF). The chelates were separated on a Waters Xterra RP18 column by gradient elution with methanol (containing 0.05molL–1 pyrrolidine-acetic acid buffer salt, pH=10.0) and THF (containing 0.05molL–1 pyrrolidine-acetic acid buffer salt, pH=10.0) as mobile phase at a flow rate of 0.5mLmin–1 and detected with a photodiode array detector in the range of 350–600nm. In the original samples the detection limits of lead, cadmium, mercury, nickel, copper, zinc and tin are 4ngL–1, 3ngL–1, 6ngL–1, 5ngL–1, 2ngL–1, 6ngL–1, and 4ngL–1, respectively. This method was applied to the determination of lead, cadmium, mercury, nickel, copper, zinc and tin in Chinese herbal medicine samples with good results.  相似文献   

2.
A microcolumn on-line preconcentration and separation system was developed for the flame atomic absorption spectrometric (FAAS) determination of trace levels of gold and palladium. The analytes were selectively adsorbed onto the microcolumn packed with 2-mercaptothiazole immobilized silica gel (MBTSG) in an acidity range of 0.1 to 6.0M HCl at a sampling flow rate of 4.0mLmin–1. The analytes adsorbed could be desorbed by a thiourea solution with a flow rate of 2.0mLmin–1. Most of the common coexisting metal ions at a concentration of 25.0mgmL–1 and anions at a concentration of 50.0mgmL–1 did not interfere with the preconcentration and determination of Au and Pd. The limits of detection (LOD), defined as three times the standard deviation of the blank (3), of Au and Pd are 10ngmL–1 and 26ngmL–1, respectively, with a preconcentration time of 60s. The relative standard deviation (RSD) is about 2.0% for 0.20µgmL–1 Au and 0.30µgmL–1 Pd. With a sample loading time of 30min, 6.7ngmL–1 Au and 10ngmL–1 Pd can be preconcentrated quantitatively. A geological sample, an anode slime and a secondary nickel alloy were successfully determined with the proposed method, and the results obtained showed good agreement with the certified values.Received December 23, 2002; accepted May 14, 2003 Published online August 8, 2003  相似文献   

3.
A novel electroanalytical method for the determination of physcion is described for the first time. Physcion yields an adsorption catalytic voltammetric peak at –0.74V (vs. SCE) in 0.4molL–1 NH4Cl–NH3·H2O buffer solution (pH 10.5) at a carbon paste electrode (CPE). The experimental results indicated that physcion is efficiently accumulated at a CPE by adsorption. In the subsequent potential scan, physcion was reduced to a homologous anthrahydroquinone compound. The compound was then immediately oxidized to physcion by the dissolved oxygen in the solution, and then physcion was again reduced at the CPE. As a result, a cyclic catalytic reaction was established. The second-order derivative peak current is proportional to the physcion concentration in the ranges of 2.0×10–104.0×10–9molL–1 (accumulation 90s) and 4.0×10–92.0×10–8molL–1 (accumulation 60s). The limit of detection is 8×10–11molL–1 (S/N=3) for a 120s accumulation time. The method was applied to the direct determination of physcion in the medicinal plant polygonum multiflorum Thumb with satisfactory results.  相似文献   

4.
A sub-micrometer thin-layer DNA modified carbon fiber microcylinder electrode was prepared by electrodeposition of ct-DNA at 1.5V (vs. Ag/AgCl). The voltammetric behavior of dopamine (3-hydroxytyramine) was investigated at the modified electrode. It was found that the modified electrode exhibits a highly electrocatalytic activity toward dopamine oxidation. Differential pulse voltammetry was used for determination of dopamine in pH 7.4 phosphate buffer solution. A linear response of the peak current versus the concentration was found in the range of 4×10–6 to 10–4molL–1 at 10–4molL–1 AA (ascorbic acid) coexistence (R=0.9959) and the range of 6×10–5 to 10–3molL–1 at 10–3molL–1 AA (R=0.9960). The presence of a high concentration of ascorbic acid did not interfere with the determination. The proposed method exhibited good recovery and reproducibility. This method can be applied to the detection of DA in real samples.  相似文献   

5.
This study aims to investigate the distribution of Na, K, Rb and Cs in human brains (5 individuals, 12 brain parts, mean age: 75 years). Distribution of the trace metals between lipid fraction and brain tissue was investigated in solvent extraction experiments. Determinations were carried out by instrumental neutron activation analysis. The present results show a rather non-homogeneous distribution for Na and a relatively uniform distribution for K, Rb and Cs. The mean concentrations found are 7440µgNag–1 dry weight, 12800µgKg–1, 14µgRbg–1 and 50ngCsg–1. A highly significant positive correlation was found between Rb and Cs. Solvent extraction experiments showed that 19% of Rb and 26% of Cs of the total content is located in lipid fraction.  相似文献   

6.
A flow-injection procedure for the determination of iron(III) in water is described. The procedure is based on the formation of an ion pair between the tetraphenylarsonium (Ph4As+) (TPA) or tetrabutylammonium (But4N+) (TBA) cations and the tetrathiocyanatoferrate(III) complex (TTF). This ion pair is extracted with chloroform, and the absorbance of the organic phase is measured at 503nm (for Ph4As+) or 475nm (for But4N+). Iron concentrations higher than 0.9×10–6molL–1 (50µgL–1) can be detected in the first case, with a relative standard deviation of 1.9% (n=12), a linear application rangeof between 1.34 and 54.0×10–6molL–1 (75–3015µgL–1), and a sampling frequency of 30h–1. For the ion pair with But4N+, the detection limit is 0.52×10–6molL–1 (29µgL–1), with a relative standard deviation of 1.6% and a linear application range between 0.73 and 54.0×10–6molL–1. Under the proposed working conditions, only Pd(IV), Cu(II) and Bi(III) interfere. With the application of the merging zones technique, considerable amounts of organic reagent can be saved. The TBA method was applied to the analysis of iron(III) in tap and industrial waste waters.  相似文献   

7.
A -mercaptopropionic acid (MPA) self-assembled monolayer modified electrode (MPA/SAM/Au) on a gold electrode has been fabricated. The characterization of the MPA/SAM/Au was investigated using attenuated total reflection-fourier transform infrared (ATR-FTIR) and A.C. impedance. The electrochemical behaviors of p-aminophenol (p-AP) were studied at the MPA/SAM/Au by cyclic voltammetry and semi-derivative voltammetry (SDV) in BR buffer solution. The modified electrode shows excellent electrocatalytic activity for the redox of p-AP and accelerates the electron transfer rate. The diffusion coefficient (D) is 4.55×10–6cm2s–1. The oxidative peak current increases linearly with the concentration of p-AP in the range of 4.0×10–88×10–6molL–1 and 1.0×10–52×10–4molL–1 by square wave voltammetry response, respectively. The detection limit (three times the signal blank/slope) is up to 1.2×10–8molL–1. The modified electrode is able to eliminate the interference of p-benzenediol, o-benzenediol and o-AP at a 40-, 90- or 70-fold concentration of p-AP, and it has been satisfactorily used for the determination of the real sample.  相似文献   

8.
Li  Wen-You  Miao  Kun  Wu  Hui-Ling  He  Xi-Wen  Liang  Hong 《Mikrochimica acta》2003,143(1):33-37
The reaction between quinaldine red (QR) and nucleic acids was studied. The free QR alone has no fluorescence in solution. However, it becomes fluorescent after binding to nucleic acids, giving maximum emission at 607nm with maximum excitation at 557nm. Maximum fluorescence intensity is produced in the pH range of 3.2–3.6. Based on the fluorescent reactions, a novel fluorometric method was developed for rapid determination of nucleic acids using QR as the fluorescent probe. Under optimal conditions, the calibration graphs were linear in the range of 0–30.0µgmL–1 for CT DNA and 0–20.0µgmL–1 for yeast RNA. The limits of detection were 38ngmL–1 for CT DNA and 142ngmL–1 for yeast RNA. Four synthetic samples were determined with satisfaction.Received December 20, 2002; accepted March 27, 2003 Published online August 8, 2003  相似文献   

9.
A photochemical chemiluminescence (CL) method for the determination of lomefloxacin (LFX) is proposed. LFX undergoes a photochemical reaction when irradiated with ultraviolet light, and a complex is formed when the photoproduct reacts with terbium(III), which can greatly enhance the CL of the Ce4+–Na2SO3 system. Under optimum experimental conditions, the linear range is between 9.0×10–10 and 1.0×10–5M, and the detection limit is 2.2×10–10M. The relative standard deviation for the determination of 5.0×10–8M LFX was 3.0% (n=11). The method has been successfully applied to the determination of LFX in dosage form, serum samples and urine samples. The recoveries were 97.9–102.3% for serum and urine samples. The possible mechanism is presented.  相似文献   

10.
We describe a single continuous-flow method for the determination of Quinine (QN) and Quinidine (QD) based on the enhancement of their native fluorescence by on-line transitory retention on a solid support placed in a flow cell. KCl solution was used as carrier/self-eluting solution. The active solid surface is regenerated by the carrier itself which also acts as eluting solution, thus making the microsensing zone reusable for subsequent measurements.In the range of 40 to 1260µL, the response of the sensor (exc/em=250/450nm) was directly proportional to the sample volume injected. The sensor was calibrated for three injection volumes: 40, 600 and 1000µL, responding linearly in the range of 40–800, 2–40 and 0.4–20µgL–1 of QN and 20–600, 5–40 and 0.9–20µgL–1 of QD with detection limits of 2.2, 0.2 and 0.1µgL–1 (QN) and 3.9, 0.4 and 0.2µgL–1 (QD), respectively. The relative standard deviation for ten independent determinations is 1.0% (QN) and 3.9% (QD). The sampling frequency ranges between 40 and 22h–1 depending on the sample volume injected. This sensor was satisfactorily applied to the determination of QN in soft drink samples and a shampoo, and to the determination of QD in pharmaceutical preparations with equally satisfactory results.  相似文献   

11.
A sensitive and fast analytical method using purge-and-trap on-line coupling with gas chromatography was developed for the determination of trace volatile sulfur compounds including dimethyl sulfide (DMS), ethyl-methyl sulfide (EMS), and dimethyl disulfide (DMDS) in beverage and coffee samples. The analytes were purged for 12min from the sample by high purity nitrogen at a flow rate of 35KPa and preconcentrated in the cooled fused-silica capillary trap at –75°C. The NaCl content in the samples was maintained at 10%. The volatile sulfur compounds were separated with an Agilent-6890 gas chromatograph by a suitable temperature program and detected by means of a flame photometric detector (FPD). The detection limits were 80ngL–1 for DMS, 80ngL–1 for EMS, and 100ngL–1 for DMDS, respectively. This method was successfully applied to the determination of volatile sulfur compounds in different beverage and coffee samples.  相似文献   

12.
The interaction of indophenol blue (IPB) with proteins in aqueous solution has been studied by optical absorption and Rayleigh light scattering (RLS) spectroscopy. At pH 3.8, the weak RLS of IPB is enhanced by proteins. Based on this phenomenon, a novel method for the determination of proteins at nanogram levels using the RLS technique is developed. The method is simple, practical and sensitive. The linear range is 0.25–20.9µgmL–1 for BSA, and 0.25–17.6µgmL–1 for HSA. The detection limits (S/N=3) are 23ngmL–1 for BSA and 22ngmL–1 for HAS. The results for the determination of proteins in human serum samples are very close to those obtained by an established clinical method. There is very little interference from amino acids, metal ions or other coexisting compounds.  相似文献   

13.
A method for the determination of trace amounts of arsenic in food samples using flow injection analysis and atomic absorption spectrometry with hydride generation (FI-HG AAS) was developed. The parameters of the flow injection system and the hydride generation were optimized with respect to reagent concentrations, atomization temperature, injection volume, reaction coil length and carrier flow rate. The limits of detection and quantification were 0.34µgL–1 and 1.2µgL–:1, respectively, and the analytical curve is linear up to 30.0µgL–1 arsenic. The relative standard deviation for 12 replicates varies between 5% for 4.0µgL–1 As and 1.8% for 30.0µgL–1 As, with an injection frequency of up to 135h–1. Interferences from Ni(II), Cu(II), Fe(III), Cr(III), Mo(II), Bi(III), Se(IV), Se(VI), Sb(III) and Sb(V) could be masked with a mixture of ascorbic acid-KI in a 5.0molL–1 HCl solution. The accuracy of the proposed method was evaluated by using certified reference materials of biological samples, and the method was used to determine the content of arsenic in fish and coffee beans.  相似文献   

14.
A single-wall carbon nanotubes (SWNT) film coated glassy carbon electrode (GCE) was fabricated for the direct determination of 4-nitrophenol (4-NP). The electrochemical behaviors of 4-NP at the SWNT-film coated GCE were examined. In 0.1M phosphate buffer with a pH of 5.0, 4-NP yields a very sensitive and well-defined reduction peak at the SWNT-modified GCE. It is found that the SWNT film exhibits obvious electrocatalytic activity towards the reduction of 4-NP since it not only increases the reduction peak current but also lowers the reduction overpotential. Based on this, an electrochemical method was proposed for the direct determination of 4-NP. The reduction peak current varies linearly with the concentration of 4-NP ranging from 1×10–8 to 5×10–6M, and the detection limit is 2.5×10–9M after 3min of open-circuit accumulation. The relative standard deviation at 2×10–7M 4-NP was about 6% (n=10), suggesting excellent reproducibility. This new method was successfully employed to determine 4-NP in several lake water samples.  相似文献   

15.
A novel chromogenic reagent, 2-(2-sulfo-4-acetylphenylazo)-7-(2,4,6-trichlorophenylazo)-1,8-dihydroxynaphthalene-3,6-disulfonic acid 1, was prepared by diazo coupling of 4-acetylaniline-2-sulfonic acid and 2,4,6-trichloroaniline to chromotropic acid through –N=N– groups. Based on this reagent, a simple, sensitive and selective spectrophotometric method was developed for the determination of lead. In 0.20M phosphoric acid medium, lead reacts with 1 to form a 1:2 blue complex with an absorption maximum of 654nm. Beers law is obeyed in the range of 0–0.6mgL–1 of lead. The apparent molar absorptivity is 1.25×105Lmol–1cm–1. The detection limit and quantification limit were found to be 0.63µgL–1 and 2.1µgL–1, respectively. The relative standard deviation for eleven replicate measurements was of 2.6%. The interference of foreign ions was also investigated. All the other foreign ions studied did not interfere with lead determination except for Ca(II) and Ba(II). The interference caused by Ca(II) and Ba(II) can be eliminated by prior extraction of lead with potassium iodide-methylisobutylketone (KI-MIBK). The proposed method was applied to the determination of lead in certified samples with satisfactory results.  相似文献   

16.
Thallium in natural water samples was determined by electrothermal atomic absorption spectrometry after 1000-fold enrichment by mini solid-phase extraction from a 100-mL sample solution. A Tl-pyrrolidine-1-carbodithioate complex formed in a sample solution of pH 1.6 was extracted on fine particles of a cellulose nitrate resin dispersed in the sample solution. The cellulose nitrate resin was then collected on a membrane filter (25mmø) by filtration under suction using a glass funnel with an effective filtration area of 0.64cm2. As a result, a circular thin layer of the resin phase with a diameter of 9mm was obtained. Then the resin phase was carved out by an acrylate resin puncher with a 10-mmø hole to put it into a sample cup containing 100µL of 10mM HNO3 containing 0.5mM NaCl. The resin phase was suspended in the solution by ultrasonication. 1000-fold enrichment was thus attained within 15min, and the suspension was delivered to electrothermal atomic absorption spectrometry. The linear calibration graph was obtained in the range of 0–4ng of Tl in 100mL of a sample solution. The detection limit obtained by 3 method was 0.19ng. The proposed method was applied to the determination of Tl in natural water samples. The results showed the concentration of Tl in seawater was 12.1±1.8pgmL–1 for the calibration graph method and 12.6±1.4pgmL–1 for the standard addition method. A snowmelt sample contained 20.7±1.0pgmL–1 of Tl.  相似文献   

17.
Cinnamtannin B1 (trimeric proanthocyanidin), which is identified and isolated from the effective fraction of the root of Lindera aggregata (Sims) Kosterm, is one kind of condensed tannin used as an effective antipyrotic and antitumor agent. Its electrochemical response can be obtained at a pyrolytic graphite electrode. Consequently, an easily performed and sensitive method for the determination of cinnamtannin B1 is developed. The detection limit is estimated to be 1.0×10–7M with the linear determination range of 2.0×10–7M to 1.8×10–6M. Five replicate analyses of 1.0×10–6M cinnamtannin B1 yields an RSD value of 2.1%. Since the working electrode does not need to be modified with any other species, it is very stable, repeatable and easily treated, and this method therefore potentially useful in real sample analysis.  相似文献   

18.
A near-infrared (near-IR) fluorescence recovery method for the determination of nucleic acids is presented. This method employs a two-reagent system composed of anionic heptamethines cyanine (HMC) and polycationic poly-lysine. The fluorescence of HMC, with maximum excitation and emission wavelengths at 778 and 804nm, respectively, was quenched by poly-lysine in proper concentration, but recovered by adding nucleic acids. Under optimal conditions, the recovered fluorescence was proportional to the concentration of nucleic acids. The calibration graphs are linear over the range of 5–300ngmL–1 for herring sperm DNA (FS DNA), 2–100ngmL–1 for calf thymus DNA (CT DNA) and 5–500ngmL–1 for snake ovum RNA (SO RNA). The corresponding detection limits are 1.49ngmL–1 for FS DNA, 0.7ngmL–1 for CT DNA and 1.61ngmL–1 for SO RNA, respectively. Four synthetic and three real nucleic acid samples were determined with satisfactory results.  相似文献   

19.
The polarographic reduction and catalytic behavior of lovastatin are studied by polarography and cyclic voltammetry. The reduction wave of lovastatin appears at ca. –1.49V (vs. SCE) in 0.16molL–1 Na2B4O7–KH2PO4 (pH=7.4) supporting electrolyte containing 20% ethanol. It is ascribed to a 2e, 2H+ addition to the carbonyl group on lactone ring. If H2O2 is present, the reduction wave is catalyzed to produce a polarographic catalytic wave. Based on the catalytic wave, a novel method for the determination of lovastatin is proposed. A rectilinear calibration curve of the catalytic wave was obtained for lovastatin concentration in the range 1.5×10–8 to 1.0×10–6molL–1. The peak current of the catalytic wave is ca. 12 times higher than that of the corresponding reduction wave. The detection limit is 8.0×10–9molL–1. The proposed method is simpler, faster and more sensitive than the known methods for lovastatin analysis, and can be applied to the direct determination of lovastatin in pharmaceuticals, urine and serum without preliminary separation.  相似文献   

20.
A flow injection hydride generation graphite furnace atomic absorption spectrometric (FI-HG-GFAAS) method was applied to the determination of Se in Se-doped and undoped cereals and bakery products. For the purpose of doping, the soils used for the cultivation of the cereals were dosed with Se-doped foliar fertilizers. The samples were dissolved in a mixture of HNO3 and H2O2 solutions using microwave-assisted digestion. The decomposition of H2Se generated from the sample solutions and the trapping of elemental Se were performed at a temperature of 300°C on an Ir-pretreated integrated graphite platform of a transversally heated graphite atomizer (THGA). For release of the trapped Se within a fairly short atomization time (5s), an atomization temperature of 2200°C was observed to be optimal. The overall efficiency of hydride generation, transport and trapping was 86%.The upper limit of the linear dynamic range of calibration was 10µgL–1, which corresponds to 0.5µgg–1 for solid samples. Recovery of the samples spiked with SeVI solutions was found to be 93±6% on average. The relative standard deviation of the determinations was less than 8%. The limit of detection was found to be 0.06µgL–1, corresponding to 3ngg–1 for solid samples. The accuracy of the method was verified with the use of IAEA-155 (whey powder) certified reference material. End-capped THGA tubes resulted in an extension of the linear calibration range compared to that of standard THGAs.The Se content in bakery products made of undoped cereals ranged from 7.7 to 68ngg–1 (wet weight) in 18 samples, whereas the Se content of the corresponding cereals was found to be below 100ngg–1 (wet weight). The Se level of cereals grown on soils treated with Se-doped fertilizers ranged from 128 to 1046ngg–1 (wet weight), and it depended linearly on the Se concentration of the corresponding foliar fertilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号