首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray crystallographic analyses of H2Os3(CO)10, H(SC2H5)Os3(CO)10 and (OCH3)2Os3(CO)10 are reported. Although hydrogen atom positions have not been located, the essential isostructural nature of the three commplexes establishes the hydride ligands as bridging two metal atoms, separated by 2.670 Å, with a formal bond order of two; the bridging hydrido- and thiolato-ligands span an osmium---osmium bond of length 2.863 Å and formal bond order one; the two μ-methoxy ligands bridge two metal atoms separated by 3.078 Å which, by simple 18 electron rule counting, has a metal---metal bond order of zero. Some general comments are made on the structures of polynuclear transition metal carbonyls.  相似文献   

2.
Treatment of the vanadium(II) tetrahydroborate complex trans-V(η1-BH4)2(dmpe)2 with (trimethylsilyl) methyllithium gives the new vanadium(II) alkyl cis-V(CH2SiMe3)2(dmpe)2, where dmpe is the chelating diphosphine 1,2-bis(dimethylphosphino)ethane. Interestingly, this complex could not be prepared from the chloride starting material VCl2(dmpe)2. The CH2SiMe3 complex has a magnetic moment of 3.8 μB, and has been characterized by 1H NMR and EPR spectroscopy. The cis geometry of the CH2SiMe3 complex is somewhat unexpected, but in fact the structure can be rationalized on steric grounds. The X-ray crystal structure of cis-V(CH2SiMe3)2(dmpe)2 is described along with that of the related vanadium(II) alkyl complex trans-VMe2(dmpe)2. Comparisons of the bond distances and angles for VMe2(dmpe) 2, V---C = 2.310(5) Å, V---P = 2.455(5) Å, and P---V---P = 83.5(2)° with those of V(CH2SiMe3)2(dmpe)2, V---C = 2.253(3) Å, V---P = 2.551(1) Å, and P ---V---P = 79.37(3)° show differences due to the differing trans influences of alkyl and phosphine ligands, and due to steric crowding in latter molecule. The V---P bond distances also suggest that metal-phosphorus π-back bonding is important in these early transition metal systems. Crystal data for VMe2(dmpe)2 at 25°C: space group P21/n, with a = 9.041(1) Å, b = 12.815(2) Å, c = 9.905(2) Å, β = 93.20(1)°, V = 1145.8(5) Å3, Z = 2, RF = 0.106, and RwF =0.127 for 74 variables and 728 data for which I 2.58 σ(I); crystal data for V(CH2SiMe3)2(dmpe)2 at −75°C: space group C2/c, with a = 9.652(4) Å, b = 17.958(5) Å, c = 18.524(4) Å, β = 102.07(3)°, V= 3140(3) Å3, Z = 4, RF = 0.033, and RwF = 0.032 for 231 variables and 1946 data for which I 2.58 σ(I).  相似文献   

3.
A new form of cobalt succinate has been discovered using high-throughput methods and its structure was solved by single crystal X-ray diffraction. Co7(C4H4O4)4(OH)6(H2O)37H2O crystallizes in the monoclinic space group P21/c with cell parameters: a=7.888(2) Å, b=19.082(6) Å, c=23.630(7) Å, β=91.700(5)°, V=3555(2) Å3, R1=0.0469. This complex structure, containing 55 crystallographically distinct non-hydrogen atoms, is compared to the previously reported nickel phase, characterized using ab initio structure solution from synchrotron powder diffraction data.  相似文献   

4.
The hydrothermal synthesis, crystal structure and some properties of a zinc phosphite with a neutral cluster, [Zn(2,2′-bipy)]2(H2PO3)4, are reported. This compound crystallizes in the triclinic system of space group P-1 (No. 2), a=8.3067(5) Å, b=8.9545(4) Å, c=10.0893(6) Å, α=95.448(2)°, β=99.7530(10)°, γ=103.461(2)°, V=712.23(7) Å3, Z=1. The cluster consists of 4-membered rings formed by alternating ZnO3N2 square pyramids and H2PO3 pseudo pyramids, with two “hanging” H2PO3 groups attached to each of the Zn centers. The clusters are linked together by extensive multipoint hydrogen bonding involving the phosphite units to form a sheet-like structure. This compound represents the first example of zinc phosphite with P---OH bonds. An intense photoluminescence was observed from this compound upon photoexcitation at 388 nm.  相似文献   

5.
Two new potassium vanadium phosphates have been prepared and their structures have been determined from analysis of single crystal X-ray data. The two compounds, K3(VO)(V2O3) (PO4)2(HPO4) and K3(VO)(HV2O3)(PO4)2(HPO4), are isostructural, except for the incorporation of an extra hydrogen atom into the nearly identical frameworks. The structures consist of a three-dimensional network of [VO]n chains connected through phosphate groups to a [V2O3] moiety. Magnetic susceptibility experiments indicate that in the case of the di-hydrogen compound, there are no significant magnetic interactions between the three independent vanadium (IV) centers. Crystal data: for K3(VO)(V2O3)(PO4)2 (HPO4), Mr = 620.02, orthorhombic space group Pnma (No. 62), a = 7.023(4) Å, b = 13.309(7) Å, c = 14.294(7) Å, V = 1336(2) Å3, Z = 4, R = 5.02%, and Rw = 5.24% for 1238 observed reflections [I > 3σ(I)]; for K3(VO)(HV2O3)(PO4)2(HPO4), Mr = 621.04, orthorhombic space group Pnma (No. 62), a = 6.975(3) Å, b = 13.559(7) Å, c = 14.130(7) Å, V = 1336(1) Å3, Z = 4, R = 6.02%, and Rw = 6.34% for 1465 observed reflections [I > 3σ(I)].  相似文献   

6.
Investigation into the synthesis of reduced vanadium phosphate has led to the formation of a new form of the barium vanadium (III) pyrophosphate compound β-BaV2(P2O7)2. It is a polymorph of the previously known BaV2(P2O7)2, which is now labeled as the α-phase. The title compound crystallizes in the P-1 (No. 2) space group with a = 6.269(1) Å, b = 7.864(3) Å, c = 6.1592(9) Å, α = 101.34(2)°, β = 105.84(1)°, and γ = 96.51(2)°. The structure consists of corner-shared VO6 octahedra and PO4 tetrahedra that are connected in V-O-P-O-V and V-O-P-O-P-O-V bonding arrangements. This interesting three-dimensional framework is characterized by seven types of intersecting tunnels, three of which are occupied by the barium cation, while the others are empty. It is important to know that one of the empty tunnels has a relatively large window with a minimum diagonal distance of 4.41 Å, which facilitates a possible framework for a lithium ion insertion reaction. The barium atom has a 10-coordination sphere, BaO10, in which the oxygen atoms can be viewed as forming two intersecting pseudohexagonal planes. β-BaV2(P2O7)2 appears to form at a relatively higher temperature than its polymorph, α-BaV2(P2O7)2. A detailed structural analysis and structural comparison with the α-phase, as well as a brief comparison with SrV2(P2O7)2, are presented.  相似文献   

7.
The crystal structures of two new oxides, BiReO4 and BiRe2O6, have been determined by single-crystal X-ray methods using an Enraf-Nonius CAD-4F diffractometer. BiReO4 crystallizes as red metallic needles in the space group Cmcm, cell dimensions a = 3.839(1) Å, b = 14.914(2) Å, c = 5.534(1) Å, Z = 4. The structure consists of sheets of corner-shared octahedra (composition ReO4) linked by Bi atoms (R = 2.55%). BiRe2O6 crystallizes as black metallic plates in the space group C2/m, cell dimensions a = 5.516(1) Å, b = 4.906(1) Å, c = 8.384(1) Å, β = 106.71(1)°, Z =2. The structure consists of layers containing Re2O10 units linked together by corner sharing of the octahedra, alternating with layers of Bi atoms (R = 2.61%). The structure is disordered due to the random stacking of the Re layers. The Re---Re distance of 2.5 Å in the Re2O10 unit is comparable to that found in similar compounds. Both compounds exhibit stereochemically active lone pairs.  相似文献   

8.
A new class of M(II)–Hg(II) (M=Cu(II), Co(II), Ni(II)) mixed-metal coordination polymers, Cu(2-pyrazinecarboxylate)2HgCl2 (4), [Co(2-pyrazinecarboxylate)2(HgCl2)2] · 0.61H2O (5) and [Ni(2-pyrazinecarboxylate)2(HgCl2)2] · 0.77H2O (6), have been prepared by self assembly of metal-containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2(M=Cu(II), Co(II), Ni(II)), with HgCl2. Compounds 46 were characterized fully by IR, elemental analysis and single crystal X-ray diffraction. Compound 4 crystallized in the monoclinic space group C2/c, with a=17.916(5) Å, b=7.223(2) Å, c=13.335(4) Å, β=128.726(3)°, V=1346.2(6) Å3, Z=4. It contains alternating Hg(II) and Cu(II) metal centers that are cross-linked by 2-pyrazinecarboxylate spacers and chlorine co-ligands to generate a unique three-dimensional Hg(II)–Cu(II) mixed metal framework. Compound 5 crystallized in the triclinic space group P , with a=6.3879(7) Å, b=6.6626(8) Å, c=13.2286(15) Å, α=96.339(2)°, β=91.590(2)°, γ=113.462(2)°, V=511.71(10) Å3, Z=1. Compound 6 also crystallized in the triclinic space group P , with a=6.3543(8) Å, b=6.6194(8) Å, c=13.2801(16) Å, α=96.449(2)°, β=92.263(2)°, γ=113.541(2)°, V=506.67(11) Å3, Z=1. Compounds 5 and 6 are isostructural and in the solid state the Hg(II)M(II)Hg(II) units are connected by Hg2Cl2 linkages to produce a novel M(II)–Hg(II) (M=Co(II), Ni(II)) zigzag mixed-metal chain, in which a new type of M–M′–M′–M array was observed. The metal containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2 (M=Cu(II), Co(II), Ni(II)), exhibit different connectivities to HgCl2 depending on the metal cation contained within them.  相似文献   

9.
Lewis-base mediated fragmentation of polymeric nickel(II) fumarate and oxalate are attempted using chelating σ-donor diamines like ethylenediamine (en) and 1,3-diaminopropane (dap) in various conditions which yielded [Ni(en)3](fum)·3H2O (1), [Ni(en)3](ox) (2), [Ni(dap)2(fum)] (3) and [Ni(dap)(ox)]·2H2O (4). While 1 and 2 are molecular products each containing octahedral [Ni(en)3]2+ moieties and the anionic dicarboxylate species, 3 and 4 are dap-incorporated polymeric products. The fumarate derivative 1 containing [Ni(en)3]2+ moieties crystallizes in the monoclinic space group C2/c with a = 17.899(4) Å, b = 11.747(2) Å, c = 10.748(2) Å, β = 125.59(3)°, V = 1837.7(6) Å3, Z = 4, while the oxalate analogue 2 is seen to be in the trigonal space group P−31c with a = 8.8770(13) Å, b = 8.8770(13) Å, c = 10.482(2) Å, γ = 120°, V = 715.3(2) Å3, Z = 2. The octahedral [Ni(en)3] units in both 1 and 2 are seen to be strongly H-bonded to the dicarboxylate moieties through the coordinated en units leading to a three-dimensional network. However, in 1 the water molecules also take part in the H-bonding and contribute to the overall 3D structure. In both 1 and 2 the crystal packing is done with the [Ni(en)3]2+ units with absolute configuration Λ(δδδ) and its mirror conformer with Δ configuration in exactly equal numbers. Spectral (IR and UV–Visible) and magnetic measurements were carried out and some of the ligand-field parameters like Dq, B and β were evaluated for all the four compounds. These values suggest the presence of octahedrally coordinated nickel(II) in all the four complexes. Spectral data suggest that 3 has the two chelating dap moieties and the fumarate coordinated in η1 form through both its carboxylate moieties while 4 has one chelating dap and the oxalate moiety coordinated in η4-bis-chelating form. Though both 1 and 2 are made of the same type of [Ni(en)3]2+ units their thermograms give entirely different thermal features; 1 showing three clearly successive and step-wise dissociation of each en unit while 2 having a combined loss of two en units in the first thermal step. The relevant thermodynamic and kinetic parameters like Ea and ΔS also could be evaluated for various thermal steps for the compounds 14 using Coats–Redfern equation.  相似文献   

10.
A new mixed Mo/Ni/Ti heteropoly compound [C5H5NH]5 [(NiOH)2Mo10O36(PO4)Ti2] has been hydrothermally synthesized and structurally determined by the single-crystal X-ray diffraction. Black prismatic crystals crystallize in the monoclinic system, space group P2(1)/n, a=11.2075(2), b=37.8328(5) c=13.0888(1) Å, β=101.4580(10)°, M=2276.13, V=5439.19(13) Å3, Z=4. Data were collected on a Siemens SMART CCD diffractometer at 293(2) K in the range of 1.68<θ<25.09° using the ω-scan technique (λ=0.71073 Å R(F)=0.0872 for 9621 reflections). The title compound contains a trimetal heteropolyanion polymer and “trans-titanium”-bridging pseudo-Keggin fragments linked to a chain.  相似文献   

11.
CuK2H2(PCrO7)2 is monoclinic, P21/c, with a unit cell: a=9.559(5)Å; b=7.196(5)Å; c=8.983(5)Å;β=93.73(5)°; Z=2; and D=2.87g/cm3.The crystal structure of this compound has been resolved by using 1938 independent reflections with a final R value of 0.03. The main feature of this compound is the existence of the mixed pyro-group CrPO7, up to now the first to be described.  相似文献   

12.
Solid solution investigations in the CsHSO4–CsH2PO4system, carried out as part of an ongoing effort to elucidate the relationship between proton conduction, hydrogen bonding, and phase transitions, yielded the new compound Cs5(HSO4)3(H2PO4)2. Single-crystal X-ray diffraction methods revealed that Cs5(HSO4)3(H2PO4)2crystallizes in space groupC2/c(or possiblyCc), has lattice parametersa=34.066(19) Å,b=7.661(4) Å,c=9.158(6) Å, andβ=90.44(6)°, a unit cell volume of 2389.9(24) Å3, a density of 3.198 Mg m−3, and four formula units in the unit cell. Sixteen non-hydrogen atoms and five hydrogen sites were located in the asymmetric unit, the latter on the basis of geometric considerations rather than from Fourier difference maps. Refinement using anisotropic temperature factors for all non-hydrogen atoms and fixed isotropic temperature factors for all hydrogen atoms yielded residuals based onF2(weighted) andFvalues, respectively, of 0.0767 and 0.0340 for observed reflections [F2>2σ(F2)]. The structure contains layers of (CsH2XO4)2that alternate with layers of (CsHXO4)3, whereXis P or S. The arrangement of Cs, H, andXO4groups within the two types of layers is almost identical to that in the end-member compounds, CsH2PO4and CsHSO4-II, respectively. Although P and S each reside on two of the threeXatom sites in Cs5(HSO4)3(H2PO4)2, the number of protons in the structure appears fixed. In addition, the correlation of S–O and S–OH bond distances with O···O distances, where the latter represents the distance between two hydrogen-bonded oxygen atoms, was determined from a review of literature data.  相似文献   

13.
The thermally stable solids Re2(CO)8[μ-InRe(CO)5]2 and Re4(CO)123-InRe(CO)5]4 could be obtained by treatment of In with Re2(CO)10 in a bomb tube. A mechanism of the formation of the latter cluster from the first one is proposed. Compared with Re2(CO)8[μ-InRe(CO)5]2, Re4(CO)123_InRe(CO)5]4 shows in polar solvents an unusual high stability, which can be explained by the higher coordination number of In with rhenium carbonyl ligands. Re4(CO)12-[μ3-InRe(CO)5]4 dissolves monomerically in acetone, where as Re2(CO)8[μ-InRe(CO)5]2 dissociates yielding Re(CO)5? anions. Single-crystal X-ray analyses of Re4(CO)123-InRe(CO)5]4 establish the metal skeleton. The central molecular fragment Re4(CO)12 contains a tetrahedral arrangement of four bonded Re atoms [ReRe 302.8 (5) pm]. The triangles of this fragment are capped with a μ3-InRe(CO)5 group each [InRe(terminal) 273.5 (7) pm; InRe (polyhedral) 281.8 (7) pm]. The bridging type of In atoms with the Re4 tetrahedron and the metal skeleton was realized for the first time. By treating Re4(CO)123-InRe(CO)5]4 with Br2 the existence of Re(CO)5 ligands could be proved by isolating BrRe(CO)5.  相似文献   

14.
The crystal structures of four hydrothermally synthesized alkaline earth-copper-selenites were determined: BaCu(SeO3)2-I [a = 5.247(1), B = 13.353(2), C = 8.981(1) Å, space group Pnm21, Z = 4, Rw = 0.024 for 1270 reflections], BaCu(SeO3)2-II [a = 5.256(1), B = 13.231(2), C = 8.933(1) Å, β = 90.19(1)°, space group P21/c, Z = 4, Rw = 0.046 for 2238 reflections], BaCu(SeO3)2-III [a = 8.031(1), B = 5.185(1), C = 15.823(2) Å, β = 90.83(1)°, space group C2/c, Z = 4, Rw = 0.038 for 1866 reflections], and SrCu(SeO3)2 [a = 7.929(1), B = 5.132(1), C = 14.997(2) Å, β = 90.53(1)°, space group C2/c, Z = 4, Rw = 0.028 for 1414 reflections; isotypic with BaCu(SeO3)2-III].BaCu(SeO3)2-I and -II contain Cu(SeO3)2 sheets lying parallel to (100) formed by CuO4 “squares” and selenite groups. These sheets are topologically different: in BaCu(SeO3)2-I they are formed by the connection of Cu2(SeO3) and Cu6(SeO3)4 rings while in BaCu(SeO3)2-II they are formed by Cu2(SeO3)2 and Cu6(SeO3)6 rings. The Cu(SeO3)2 sheets are rugged in BaCu(SeO3)2-I and they are slightly waved in BaCu(SeO3)2-II. In both compounds they are connected to each other by a fifth Cu---O bond and by the Ba atoms. In BaCu(SeO3)2-III and in its isotypic Sr analog the CuO4 “squares” and the selenite groups form parallel chains [010], which are connected by the alkaline earth atoms.  相似文献   

15.
Two oxoborates, (Pb3O)2(BO3)2MO4 (M=Cr, Mo), have been prepared by solid-state reactions below 700 °C. Single-crystal XRD analyses showed that the Cr compound crystallizes in the orthorhombic group Pnma with a=6.4160(13) Å, b=11.635(2) Å, c=18.164(4) Å, Z=4 and the Mo analog in the group Cmcm with a=18.446(4) Å, b=6.3557(13) Å, c=11.657(2) Å, Z=4. Both compounds are characterized by one-dimensional chains formed by corner-sharing OPb4 tetrahedra. BO3 and CrO4 (MoO4) groups are located around the chains to hold them together via Pb–O bonds. The IR spectra further confirmed the presence of BO3 groups in both structures and UV–vis diffuse reflectance spectra showed band gaps of about 1.8 and 2.9 eV for the Cr and Mo compounds, respectively. Band structure calculations indicated that (Pb3O)2(BO3)2MoO4 is a direct semiconductor with the calculated energy gap of about 2.4 eV.  相似文献   

16.
A novel thioantimonate(III) [(CH3NH3)1.03K2.97]Sb12S20·1.34H2O was synthesized hydrothermally. It crystallizes in space groupP , witha=11.9939(7) Å,b=12.8790(8) Å,c=14.9695(9) Å,α=100.033(1)°,β=99.691(1)°,γ=108.582(1)°,V=2095.3(2) Å3, andZ=2. The structure is determined from single crystal X-ray diffraction data collected at room temperature and refined toR(F)=0.037. In the crystal structure, each Sb(III) atoms has short bonds (2.37–2.58 Å) to three S atoms. The pyramidal [SbS3] groups share common S atoms forming two types of centrosymmetric [Sb12S20] rings with the same topology. These rings are interconnected by weaker Sb–S bonds (2.92–3.29 Å) into 2-dimensional layers. Adjacent layers are parallel with K+and CH3NH+3ions and H2O molecules located between them. Variation of bond valence sums calculated for the Sb(III) cations is found to be correlated with the coordination geometry. This is interpreted as due to the stereochemical activity of their lone electron pairs.  相似文献   

17.
The synthesis and X-ray structure of a new cluster compound (Pr4N)2Co[Re6S8(CN)6] · 6H2O is reported. It crystallizes in orthorhombic symmetry, P212121 space group with four formula units per unit cell. The following parameters were found: a = 17.942(9) Å, b = 17.979(4) Å, c = 16.344(8) Å, V=5272 0rA3, ρcalc=2.607 g cm−1; final R=0.0331. The compound was prepared by interaction of layered Cs2Co[Re6S8(CN)6] · 2H2O with aqueous solution of Pr4NBr. This interaction results in cleavage of covalently linked {Co(H2O)2Re6S8(CN)6}2− sheets and in formation of isolated fragments {Co(H2O)5Re6S8(CN)6}u2−. Heating of (Pr4N)2Co[Re6S8(CN)6] · 6H2O results in elimination of two water molecules and in formation of (Pr4N)2Co[Re6S8(CN)6] · 4H2O containing infinite -Co(H2O)4-NC-Re6S8(CN) 4-CN-Co(H2O)4-chains.  相似文献   

18.
Syntheses and structure determination of TbIII and ErIII complexes with nitrilotriacetic acids (nta) are reported. Their crystal and molecular structures, molecular formulas, and compositions were determined by single-crystal X-ray structure analyses and elementary analyses, respectively. The crystal of the (NH4)3[TbIII(nta)2(H2O)]·4H2O complex belongs to the monoclinic crystal system and C2/c space group. Crystal data are as follows: a = 16.357(8) Å, b = 8.552(4) Å, c = 17.390(9) Å, β = 104.748(7)°, V = 2352.6(19) Å3, Z = 4, Mr = 675.32, Dc = 1.932 g·cm−3, μ = 3.112 mm−1, and F(000) = 1368. The final R and Rw are 0.0220 and 0.0494 for 2357 (I > 2σ(I)) unique reflections, R and Rw are 0.0266 and 0.0510 for all 5613 reflections, respectively. The TbIIIN2O7 moiety in the [TbIII(nta)2(H2O)]3− complex anion has a pseudo-monocapped square antiprismatic nine-coordinate structure, in which the eight coordinate atoms (two N and six O) are from two nta ligands and the water molecule is coordinated to the central TbIII ion directly as the ninth coordinate atom. The crystal of the (NH4)3[ErIII(nta)2] complex belongs to the trigonal crystal system and R-3c space group. Crystal data are as follows: a = 7.9181(16) Å, b = 7.9181(16) Å, c = 54.27(2) Å, γ = 120°, V = 2946.7(14) Å3, Z = 6, Mr = 597.61, D c = 2.021 g·cm−3, μ = 4.345 mm−1, and F(000) = 1770. The final R and Rw are 0.0295 and 0.0673 for 677 (I > 2σ(I)) unique reflections, R and Rw are 0.0366 and 0.0700 for all 4827 reflections, respectively. The ErIIIN2O6 part in the [ErIII(nta)2]3− complex anion is an eight-coordinate structure with a pseudo-dicapped octahedron, in which the eight coordinate atoms (two N and six O) are from two nta ligands.Original Russian Text Copyright © 2004 by J. Wang, X. D. Zhang, Y. Wang, Y. Zhang, Z. R. Liu, J. Tong, and P. L. Kang__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 6, pp. 1067–1075, November–December, 2004.  相似文献   

19.
Employing trans-1,4-diaminocyclohexane (trans-1,4-DACH) as a template, a new two-dimensional layered zinc phosphite (C6H16N2)Zn3(HPO3)4H2O (1) has been prepared hydrothermally. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic space group P21/n with a=10.458(2) Å, b=14.720(3) Å, c=13.079(3) Å, β=97.93(3)°, V=1994.1(7) Å3, Z=4, R1=0.0349 (I>2σ(I)) and wR2=0.0605 (all data). The inorganic layer is built up by alternation of ZnO4 tetrahedra and HPO3 pseudo pyramids forming a 4.6.8-net. The sheet is featured by a series of capped six-membered rings. The diprotonated trans-1,4-DACH molecules reside in the interlayer region and interact with the inorganic network through H-bonds.  相似文献   

20.
The reaction of hydrogen sulphide with [Co(H2O)6](BF4)2 and triethylphosphine in the presence of sodium tetraphenylborate or tetrabutylammonium hexafluorophosphate gave the paramagnetic clusters [Co63-S)8(PEt3)6](Y) (Y = BPh4, (1), PF6, (2)). These compounds can be easily reduced by sodium napthalenide to the diamagnetic species [Co63-S)8(PEt3)6] · 2C4H8O (3). The molecular structures of 1 and 3 have been established by single-crystal X-ray diffraction methods. Crystal data: (1) space group P , a = 19.481(9), b = 15.562(7), c = 12.390(b) Å, α = 92.70(8), β = 94.50(7), γ = 94.10(9)°, Z = 2, (3) space group R , a = 11.780(6) Å, α = 92.50(7)°, Z = 1. Both structures were solved by the heavy atom method and refined by full-matrix least-squares techniques to the conventional R factors values of 0.050 for 1 and 0.044 for 3 on the basis of 4251 and 1918 observed reflections, respectively. The two clusters [Co63-S)8)(PEt3)6]1+,0 are isostructural, the inner core consisting of an octahedron of cobalt atoms with all the faces symmetrically capped by triply bridging sulphur atoms. Each metal centre is additionally linked to a triethylphosphine group so that each cobalt atom is co-ordinated by four sulphur atoms and one phosphorus in a distorted square pyramidal environment. The addition of one electron whilst leaving unchanged the geometry of the inner framework, induces small changes in the structural parameters, the average Co---Co and Co---P distances being 2.794 (3) and 2.162 (2) Å for 1 and 2.817 (3) and 2.138 (2) Å for 3 respectively. Electrochemistry in non-aqueous solvents shows the electron-transfer sequence
The tricationic species is stable only in the short time of cyclic voltammetric tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号