首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In a bounded domain \({\Omega \subset \mathbb R^2}\) with smooth boundary we consider the problem
$\Delta u = 0 \quad {\rm{in }}\, \Omega, \qquad \frac{\partial u}{\partial \nu} = \frac1\varepsilon f(u) \quad {\rm{on }}\,\partial\Omega,$
where ν is the unit normal exterior vector, ε > 0 is a small parameter and f is a bistable nonlinearity such as f(u) = sin(π u) or f(u) = (1 ? u 2)u. We construct solutions that develop multiple transitions from ?1 to 1 and vice-versa along a connected component of the boundary ?Ω. We also construct an explicit solution when Ω is a disk and f(u) = sin(π u).
  相似文献   

2.
In the context of measure spaces equipped with a doubling non-trivial Borel measure supporting a Poincaré inequality, we derive local and global sup bounds of the nonnegative weak subsolutions of
$$\begin{aligned} (u^{q})_t-\nabla \cdot {(|\nabla u|^{p-2}\nabla u)}=0, \quad \mathrm {in} \ U_\tau = U \times (\tau _1, \tau _2] , \quad p>1,\quad q>1 \end{aligned}$$
and of its associated Dirichlet problem, respectively. For particular ranges of the exponents p and q, we show that any locally nonnegative weak subsolution, taken in \(Q (\subset \bar{Q}\subset U_\tau )\), is controlled from above by the \(L^\alpha (\bar{Q}) \)-norm, for \(\alpha = \max \{p, q+1\}\). As for the global setting, under suitable assumptions on the boundary datum g and on the initial datum, we obtain sup bounds for u, in \(U \times \{ t\}\), which depend on the \(\sup g\) and on the \(L^{q+1}(U \times (\tau _1, \tau _1+t])\)-norm of \((u-\sup g)_+\), for all \(t \in (0, \tau _2-\tau _1]\). On the critical ranges of p and q, a priori local and global \(L^\infty \) estimates require extra qualitative information on u.
  相似文献   

3.
In this paper we study the asymptotic behavior of solutions of the following nonautonomous wave equation with nonlinear dissipation.
$\left\{\begin{array}{ll} u_{tt}+\vert u_{t}\vert^{\alpha}u_{t}-\Delta u +f(u)=g(t,x),\quad{\rm in}\,\mathbb{R}_{+}\times\Omega,\\ \qquad\qquad u(t,x)=0,\quad\, {\rm on}\,\mathbb{R}_{+}\times\partial\Omega,\end{array}\right.$
where f is an analytic function, α is a small positive real and g(t, ·) tends to 0 sufficiently fast in L 2(Ω) as t tends to ∞.
We also obtain a general convergence result and the rate of decay of solutions for a class of second order ODE containing as a special case
$\left\{\begin{array}{ll} \ddot{U}(t)+\Vert\dot{U}(t)\Vert^{\alpha}\dot{U}(t)+\nabla F(U(t))=g(t),\quad t \in \mathbb{R}_+,\\ \qquad U(0)=U_{0}\,\in \mathbb{R}^{N},\quad\dot{U}(0)=U_{1}\in \mathbb{R}^{N}. \end{array}\right.$
  相似文献   

4.
In this paper, the Lie symmetry analysis and the dynamical system method are performed on an integrable evolution equation for surface waves in deep water
$$\begin{aligned} 2\sqrt{\frac{k}{g}}u_{xxt}=k^2u_x-\frac{3}{2}k(uu_x)_{xx}. \end{aligned}$$
All of the geometric vector fields of the equation are presented, as well as some exact similarity solutions with an arbitrary function of t are obtained by using a special symmetry reduction and the dynamical system method. Different kinds of traveling wave solutions also be found by selecting the function appropriately.
  相似文献   

5.
For planar polynomial vector fields of the form
$$\begin{aligned} (-y+X(x,y))\dfrac{\partial }{\partial x}+(x+Y(x,y))\dfrac{\partial }{\partial y}, \end{aligned}$$
where X and Y start at least with terms of second order in the variables x and y, we determine necessary and sufficient conditions under which the origin is a center or a uniform isochronous centers.
  相似文献   

6.
7.
We focus here on the analysis of the regularity or singularity of solutions Ω 0 to shape optimization problems among convex planar sets, namely:
$J(\Omega_{0})={\rm min} \{J(\Omega), \Omega \quad {\rm convex},\Omega \in \mathcal{S}_{\rm ad}\},$
where \({\mathcal{S}_{\rm ad}}\) is a set of 2-dimensional admissible shapes and \({J:\mathcal{S}_{\rm ad}\rightarrow\mathbb{R}}\) is a shape functional. Our main goal is to obtain qualitative properties of these optimal shapes by using first and second order optimality conditions, including the infinite dimensional Lagrange multiplier due to the convexity constraint. We prove two types of results:
  1. i)
    under a suitable convexity property of the functional J, we prove that Ω 0 is a W 2,p -set, \({p\in[1, \infty]}\). This result applies, for instance, with p = ∞ when the shape functional can be written as J(Ω) = R(Ω) + P(Ω), where R(Ω) = F(|Ω|, E f (Ω), λ1(Ω)) involves the area |Ω|, the Dirichlet energy E f (Ω) or the first eigenvalue of the Laplace–Dirichlet operator λ1(Ω), and P(Ω) is the perimeter of Ω;
     
  1. ii)
    under a suitable concavity assumption on the functional J, we prove that Ω 0 is a polygon. This result applies, for instance, when the functional is now written as J(Ω) = R(Ω) ? P(Ω), with the same notations as above.
     
  相似文献   

8.
We study the Neumann boundary value problem for the second order ODE
$$\begin{aligned} u^{\prime \prime } + (a^+(t)-\mu a^-(t))g(u) = 0, \qquad t \in [0,T], \end{aligned}$$
(1)
where \(g \in {\mathcal {C}}^1({\mathbb {R}})\) is a bounded function of constant sign, \(a^+,a^-: [0,T] \rightarrow {\mathbb {R}}^+\) are the positive/negative part of a sign-changing weight \(a(t)\) and \(\mu > 0\) is a real parameter. Depending on the sign of \(g^{\prime }(u)\) at infinity, we find existence/multiplicity of solutions for \(\mu \) in a “small” interval near the value
$$\begin{aligned} \mu _c = \frac{\int _0^T a^+(t) \, dt}{\int _0^T a^-(t) \, dt}\,. \end{aligned}$$
The proof exploits a change of variables, transforming the sign-indefinite Eq. (1) into a forced perturbation of an autonomous planar system, and a shooting argument. Nonexistence results for \(\mu \rightarrow 0^+\) and \(\mu \rightarrow +\infty \) are given, as well.
  相似文献   

9.
Entanglement network of carboxymethyl cellulose (CMC) was characterized based on the dynamic viscoelasticity of the concentrated solutions in an ionic liquid. According to the concentration dependence of the molecular weight between entanglements (M e), M e for the molten state (M e,melt) for CMC was estimated to be 3.9 × 103 as a chain variable reflecting the chemical structure of the polysaccharide. Furthermore, relations between M e,melt and other chain variables were examined to elucidate the specificity in the entanglement properties of CMC and related polysaccharides. It was shown that the number of entanglement strands (P e), the ratio of the cube of the tube diameter, and the volume occupied by the entanglement strand, for CMC was 72 being significantly larger than the universal value of ca. 20 recognized for flexible polymers. Anomalous values of P e > 20 were also obtained for related polysaccharides such as cellulose and amylose.
Graphical abstract ?
  相似文献   

10.
Let G be the Green’s function for the Airy operator
$$\begin{aligned} L\varphi := -\varphi ''+ x \varphi , \quad 0< x < \infty , \quad \varphi (0)=0. \end{aligned}$$
We show that the integral operator defined by G is Hilbert–Schmidt and that the 2-modified Fredholm determinant
$$\begin{aligned} {\mathrm {det}}_2(1+zG) = \frac{{\mathrm {Ai}}(z)}{{\mathrm {Ai}}(0)} , \quad z \in {\mathbb {C}}. \end{aligned}$$
  相似文献   

11.
We investigate the electrorheological (ER) properties of clay (montmorillonite, sepiolite, and laponite®). The selected clays allow to distinguish between planar particles of different sizes (montmorillonite and laponite®), and elongated ones (sepiolite). The effect of coating them with the surfactant CTAB improves dispersibility in the oil medium and favors the ER response, prticularly in the case of laponite®, whereas in the case of montmorillonite, microscopic observations show that the columnar structures are broken in places leading to a reduced yield stress. Both the static yield stress and the storage modulus grow faster with the field in sepiolite suspensions as compared to laponite®. When dealing with mixed systems, it is found that the field-induced montmorillonite structures are reinforced by the addition of either laponite® or sepiolite, whereas when the latter two are combined, it is laponite® that dominates the ER response.
Graphical abstract ?
  相似文献   

12.
This work presents different rheological methods to determine the effect of fiber surface treatment on their interaction with a polymer matrix. In particular, surface-initiated catalytic polymerization was investigated on hemp fibers to improve their adhesion with linear medium-density polyethylene (LMDPE). The selected rheological tests (creep-recovery (solid state), small and large amplitude oscillation shear, and transient rheology (melt state)) were used to compare the treated and untreated fiber composites with the neat matrix. The results showed a significant improvement of the treated hemp composite (LPHC) creep modulus with respect to its untreated counterpart (LNHC) leading to a reduction of the creep strain, especially as temperature increases. The transient viscosity was modeled using a modified Kohlrausch-Williams-Watt (KWW) equation showing an increase in the transient viscosity (\( {\eta}_0^{+} \)) and relaxation time (τ) with fiber addition and surface treatment. These results were confirmed by large amplitude oscillatory shear (LAOS) through the reduction of the relative third harmonic (I3/1), intrinsic nonlinearity parameter (Q0), and nonlinear viscoelastic ratio (NRL). The results clearly show that catalytic polymerization is a good surface modification technique to increase the compatibility between natural fibers and polymer matrices as to improve all their final properties.
Graphical Abstract ?
  相似文献   

13.
The integrability theory for the differential equations, which describe the motion of an unconstrained rigid body around a fixed point is well known. When there are constraints the theory of integrability is incomplete. The main objective of this paper is to analyze the integrability of the equations of motion of a constrained rigid body around a fixed point in a force field with potential U(γ)=U(γ 1,γ 2,γ 3). This motion subject to the constraint 〈ν,ω〉=0 with ν is a constant vector is known as the Suslov problem, and when ν=γ is the known Veselova problem, here ω=(ω 1,ω 2,ω 3) is the angular velocity and 〈?,?〉 is the inner product of $\mathbb{R}^{3}$ . We provide the following new integrable cases. (i) The Suslov’s problem is integrable under the assumption that ν is an eigenvector of the inertial tensor I and the potential is such that $$U=-\frac{1}{2I_1I_2}\bigl(I_1\mu^2_1+I_2 \mu^2_2\bigr), $$ where I 1,I 2, and I 3 are the principal moments of inertia of the body, μ 1 and μ 2 are solutions of the first-order partial differential equation $$\gamma_3 \biggl(\frac{\partial\mu_1}{\partial\gamma_2}- \frac{\partial\mu_2}{\partial \gamma_1} \biggr)- \gamma_2\frac{\partial \mu_1}{\partial\gamma_3}+\gamma_1\frac{\partial\mu_2}{\partial \gamma_3}=0. $$ (ii) The Veselova problem is integrable for the potential $$U=-\frac{\varPsi^2_1+\varPsi^2_2}{2(I_1\gamma^2_2+I_2\gamma^2_1)}, $$ where Ψ 1 and Ψ 2 are the solutions of the first-order partial differential equation where $p=\sqrt{I_{1}I_{2}I_{3} (\frac{\gamma^{2}_{1}}{I_{1}}+\frac{\gamma^{2}_{2}}{I_{2}}+ \frac{\gamma^{2}_{3}}{I_{3}} )}$ . Also it is integrable when the potential U is a solution of the second-order partial differential equation where $\tau_{2}=I_{1}\gamma^{2}_{1}+I_{2}\gamma^{2}_{2}+I_{3}\gamma^{2}_{3}$ and $\tau_{3}=\frac{\gamma^{2}_{1}}{I_{1}}+\frac{\gamma^{2}_{2}}{I_{2}}+ \frac{\gamma^{2}_{3}}{I_{3}}$ . Moreover, we show that these integrable cases contain as a particular case the previous known results.  相似文献   

14.
We prove the uniqueness of positive ground state solutions of the problem \({ {\frac {d^{2}u}{dr^{2}}} + {\frac {n-1}{r}}{\frac {du}{dr}} + u \ln(|u|) = 0}\), \({u(r) > 0~\forall r \ge 0}\), and \({(u(r),u'(r)) \to (0, 0)}\) as \({r \to \infty}\). This equation is derived from the logarithmic Schrödinger equation \({{\rm i}\psi_{t} = {\Delta} \psi + u \ln \left(|u|^{2}\right)}\), and also from the classical equation \({{\frac {\partial u}{\partial t}} = {\Delta} u +u \left(|u|^{p-1}\right) -u}\). For each \({n \ge 1}\), a positive ground state solution is \({ u_{0}(r) = \exp \left(-{\frac{r^2}{4}} + {\frac{n}{2}}\right),~0 \le r < \infty}\). We combine \({u_{0}(r)}\) with energy estimates and associated Ricatti equation estimates to prove that, for each \({n \in \left[1, 9 \right]}\), \({u_{0}(r)}\) is the only positive ground state. We also investigate the stability of \({u_{0}(r)}\). Several open problems are stated.  相似文献   

15.
16.
We deal with one dimensional p-Laplace equation of the form
$$\begin{aligned} u_t = (|u_x|^{p-2} u_x )_x + f(x,u), \ x\in (0,l), \ t>0, \end{aligned}$$
under Dirichlet boundary condition, where \(p>2\) and \(f:[0,l]\times {\mathbb {R}}\rightarrow {\mathbb {R}}\) is a continuous function with \(f(x,0)=0\). We will prove that if there is at least one eigenvalue of the p-Laplace operator between \(\lim _{u\rightarrow 0} f(x,u)/|u|^{p-2}u\) and \(\lim _{|u|\rightarrow +\infty } f(x,u)/|u|^{p-2}u\), then there exists a nontrivial stationary solution. Moreover we show the existence of a connecting orbit between stationary solutions. The results are based on Conley index and detect stationary states even when those based on fixed point theory do not apply. In order to compute the Conley index for nonlinear semiflows deformation along p is used.
  相似文献   

17.
We develop a local discontinuous Galerkin finite element method for the distributed-order time and Riesz space-fractional convection–diffusion and Schrödinger-type equations. The stability of the presented schemes is proved and optimal order of convergence \(\mathcal {O}(h^{N+1}+(\Delta t)^{1+\frac{\theta }{2}}+\theta ^{2})\) for the Riesz space-fractional diffusion and Schrödinger-type equations with distributed order in time, an order of convergence of \(\mathcal {O}(h^{N+\frac{1}{2}}+(\Delta t)^{1+\frac{\theta }{2}}\) \(+\theta ^{2})\) is provided for the Riesz space-fractional convection–diffusion equations with distributed order in time where h, \(\theta \) and \(\Delta t\) are space step size, the distributed-order variables and the step sizes in time, respectively. Finally, the performed numerical examples confirm the optimal convergence order and illustrate the effectiveness of the method.  相似文献   

18.
We consider the elliptic equation \(-\Delta u +u =0\) with nonlinear boundary condition \(\frac{\partial u}{\partial n}= \lambda u + g(\lambda ,x,u), \) where \(\frac{g(\lambda ,x,s)}{s} \rightarrow 0, \hbox { as }|s|\rightarrow \infty \) and g is oscillatory. We provide sufficient conditions on g for the existence of unbounded sequences of stable solutions, unstable solutions, and turning points, even in the absence of resonant solutions.  相似文献   

19.
The fundamental assumption of the paper is that the extra stress tensor of an electrorheological fluid is an isotropic tensor valued function of the rate of strain tensor D and the vector n (which characterizes the orientation and length N of the fibers formed by application of an electric field). The resulting constitutive equation for is supplemented by the solution of the previously studied time evolution equation for n. Plastic behavior for the shear and normal stresses is predicted. Anticipating that the action of increasing shear rate is i) to orient the fibers more and more in the direction of flow and ii) simultaneously to break up the fibers leads to the conclusion that for the same behavior is encountered as without an electric field. Using realistically possible approximation formulas for the dependence of and N on leads to the Bingham behavior for and power law behavior for large shear rates.
Basim Abu-JdayilEmail:
  相似文献   

20.
Let Ω be a bounded smooth domain in \({{R}^N, N \geqq 2}\), and let us denote by d(x) the distance function d(x, ?Ω). We study a class of singular Hamilton–Jacobi equations, arising from stochastic control problems, whose simplest model is
$ - \alpha \Delta u+ u + \frac{\nabla u \cdot B (x)}{d (x)}+ c(x) |\nabla u|^2=f (x) \quad {\rm in}\,\Omega, $
where f belongs to \({W^{1,\infty}_{\rm loc} (\Omega)}\) and is (possibly) singular at \({\partial \Omega, c\in W^{1,\infty} (\Omega)}\) (with no sign condition) and the field \({B\in W^{1,\infty} (\Omega)^N}\) has an outward direction and satisfies \({B\cdot \nu\geqq \alpha}\) at ?Ω (ν is the outward normal). Despite the singularity in the equation, we prove gradient bounds up to the boundary and the existence of a (globally) Lipschitz solution. We show that in some cases this is the unique bounded solution. We also discuss the stability of such estimates with respect to α, as α vanishes, obtaining Lipschitz solutions for first order problems with similar features. The main tool is a refined weighted version of the classical Bernstein method to get gradient bounds; the key role is played here by the orthogonal transport component of the Hamiltonian.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号