首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A series of new hexa‐coordinated ruthenium(II) hydroxyquinoline–thiosemicarbazone complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = hydroxyquinoline–thiosemicarbazone) were synthesized by reacting ruthenium precursor complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with hydroxyquinoline–thiosemicarbazone ligands in ethanol. The new complexes were characterized by analytical and spectroscopic (FT‐IR, UV–visible, NMR (1H, 13C and 31P) and fast atom bombardment (FAB)–mass spectrometric methods. Based on the spectral results, an octahedral geometry was assigned for all the complexes. The new complexes showed good catalytic activity for the conversion of aldehydes to amides in the presence of hydroxylamine hydrochloride–sodium bicarbonate and for the oxidation of alkanes into their corresponding alcohols and ketones in the presence of m‐chloroperbenzoic acid. The complexes also catalyzed the N‐alkylation of benzylamine in the presence of KOtBu in alcohol medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A series of new hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = chalcone thiosemicarbazone) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with chalcone thiosemicarbazones in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (IR, UV-vis, 1H, 31P and 13C NMR) methods. On the basis of data obtained, an octahedral structure was assigned for all of the complexes. The chalcone thiosemicarbazones behave as dianionic tridentate O, N, S donors and coordinate to ruthenium via the phenolic oxygen of chalcone, the imine nitrogen of thiosemicarbazone and thienol sulfur. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones and they were also found to be efficient catalysts for the transfer hydrogenation of carbonyl compounds.  相似文献   

3.
A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′-hydroxychalcones) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′-hydroxychalcones in benzene under reflux. The new complexes have been characterized by analytical and spectral (IR, electronic, 1H, 31P and 13C NMR) data. Based on the above data, an octahedral structure has been assigned for all the complexes. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide (NMO) as co-oxidant and also found efficient catalyst in the transfer hydrogenation of ketones. The antifungal properties of the complexes have also been examined and compared with standard Bavistin.  相似文献   

4.
Reactions of [RuHCl(CO)(B)(EPh3)2] (B = EPh3 or Py; E = P or As) and chalcones in benzene with equal molar ratio led to the formation of new complexes of the type [RuCl(CO)(EPh3)(B)(L1?4)] (B = PPh3, AsPh3 or Py; E = P or As; L = chalcone). The new complexes have been characterized by analytical and spectroscopic (IR-, electronic, 1H-, 31P-, and 13C-NMR) data. Based on these data, an octahedral structure has been assigned for all the complexes. The chalcones are monobasic bidentate (O,O) donors and coordinate to ruthenium via phenolic and carbonyl oxygen. The new complexes exhibit efficient catalytic activity for the transfer hydrogenation of carbonyl compounds. Antifungal properties of the ligands and their complexes have been examined and compared with standard Bavistin.  相似文献   

5.
The reactions of [RuHCl(CO)(B)(EPh3)2] (B = EPh3 or Py; E = P or As) and Schiff bases in 1:1 molar ratio led to the formation of [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = Schiff base ligand). The new complexes have been characterized by analytical and spectroscopic (IR, electronic and 1H NMR) data. They have been assigned an octahedral structure. The new complexes were found to catalyse the transfer hydrogenation of ketones.  相似文献   

6.
Complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3, py or pip; L = dianion of the Schiff bases derived from the condensation of salicyloyl hydrazide with acetone, ethyl methyl ketone and salicylaldehyde have been synthesised by the reaction of equimolar amounts of [RuHCl(CO)(EPh3)2(B)] and Schiff bases in benzene. The resulting complexes have been characterized by analytical and spectral (i.r., electronic, n.m.r.) data. The arrangements of Ph3P groups around the Ru metal was determined from 31P-n.m.r. spectra. An octahedral structure has been assigned to all the new complexes. All the complexes exhibit catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in the presence of N-methylmorpholine-N-oxide as co-oxidant.  相似文献   

7.
A series of six-coordinate ruthenium(II) complexes [Ru(CO)(L x )(B)] (B = PPh3, AsPh3 or Py; L x = unsymmetrical tetradentate Schiff base, x = 5–8; L5= salen-2-hyna, L6= Cl-salen-2-hyna, L7= valen-2-hyna, L8= o-hyac-2-hyna) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As) with unsymmetrical Schiff bases in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (infrared, electronic, 1H, 31P, and 13C NMR) data. An octahedral structure has been assigned for all the complexes. The new complexes are efficient catalysts for the transfer hydrogenation of ketones and also exhibit catalytic activity for the carbon–carbon coupling reactions.  相似文献   

8.
The synthesis and characterisation of some new hexa-coordinated Schiff base complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3 or AsPh3 or py or pip; L = anion of the Schiff bases derived from 2-hydroxy-1-naphthaldehyde and aniline, 4-chloroaniline or 2-methylaniline) are reported. I.r., electronic, 1H-n.m.r, 31P-n.m.r. spectra, catalytic activity and antibacterial activity of the complexes are discussed. An octahedral structure has been tentatively proposed for all the complexes.  相似文献   

9.
Diamagnetic ruthenium(II) complexes of the type [Ru(L)(CO)(B)(EPh3)] [where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip and L = dibasic tridentate ligands dehydroacetic acid semicarbazone (abbreviated as dhasc) or dehydroacetic acid phenyl thiosemicarbazone (abbreviated as dhaptsc)] were synthesized from the reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip) with different tridentate chelating ligands derived from dehydroacetic acid with semicarbazide or phenylthiosemicarbazide. All the complexes have been characterized by elemental analysis, FT-IR, UV–Vis and 1H NMR spectral methods. The coordination mode of the ligands and the geometry of the complexes were confirmed by single crystal X-ray crystallography of one of the complexes [Ru(dhaptsc)(CO)(PPh3)2] (5). All the complexes are redox active and are monitored by cyclic voltammetric technique. Further, the catalytic efficiency of one of the ruthenium complexes (5) was determined in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide.  相似文献   

10.
Reactions of ruthenium(II) complexes [RuHX(CO)(EPh3)2(B)] (X = H or Cl; B = EPh3, pyridine (py) or piperidine (pip); E = P or As) with bidentate Schiff base ligands derived by condensingo- hydroxyacetophenone with aniline,o- orp-methylaniline have been carried out. The products were characterized by analytical, IR, electronic and1H-NMR spectral studies and are formulated as [Ru(X)(CO) (L)(EPh3)(B)] (L = Schiff base anion; X = H or Cl; B = EPh3, py or pip; E = P or As). An octahedral structure has been tentatively proposed for the new complexes. The new complexes were tested for their catalytic activities in the oxidation of benzyl alcohol to benzaldehyde.  相似文献   

11.
Alcohols are oxidized by N‐methylmorpholine‐N‐oxide (NMO), ButOOH and H2O2 to the corresponding aldehydes or ketones in the presence of catalyst, [RuH(CO)(PPh3)2(SRaaiNR′)]PF6 ( 2 ) and [RuCl(CO)(PPh3)(SκRaaiNR′)]PF6 ( 3 ) (SRaaiNR′ ( 1 ) = 1‐alkyl‐2‐{(o‐thioalkyl)phenylazo}imidazole, a bidentate N(imidazolyl) (N), N(azo) (N′) chelator and SκRaaiNR′ is a tridentate N(imidazolyl) (N), N(azo) (N′), Sκ‐R is tridentate chelator; R and R′ are Me and Et). The single‐crystal X‐ray structures of [RuH(CO)(PPh3)2(SMeaaiNMe)]PF6 ( 2a ) (SMeaaiNMe = 1‐methyl‐2‐{(o‐thioethyl)phenylazo}imidazole) and [RuH(CO)(PPh3)2(SEtaaiNEt)]PF6 ( 2b ) (SEtaaiNEt = 1‐ethyl‐2‐{(o‐thioethyl)phenylazo}imidazole) show bidentate N,N′ chelation, while in [RuCl(CO)(PPh3)(SκEtaaiNEt)]PF6 ( 3b ) the ligand SκEtaaiNEt serves as tridentate N,N′,S chelator. The cyclic voltammogram shows RuIII/RuII (~1.1 V) and RuIV/RuIII (~1.7 V) couples of the complexes 2 while RuIII/RuII (1.26 V) couple is observed only in 3 along with azo reductions in the potential window +2.0 to ?2.0 V. DFT computation has been used to explain the spectra and redox properties of the complexes. In the oxidation reaction NMO acts as best oxidant and [RuCl(CO)(PPh3)(SκRaaiNR′)](PF6) ( 3 ) is the best catalyst. The formation of high‐valent RuIV=O species as a catalytic intermediate is proposed for the oxidation process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Four tridentate O, N, O donor Schiff base ligands were prepared by the reaction of substituted benzhydrazide and appropriate salicylaldehyde. The complexes of these ligands were synthesized by refluxing the ligands with ruthenium(II) starting complexes of the formula [RuHCl(CO)(EPh3)2B] in benzene, where E = P or As; B = PPh3 or AsPh3 or pyridine. The newly synthesized complexes were characterized by elemental, spectral (FT‐IR, UV and NMR) and electrochemical data. On the basis of the above studies, an octahedral structure has been proposed for all the complexes. The catalytic efficiency of the complexes in aryl–aryl couplings and oxidation of alcohols was examined and their inhibition activity against the growth of the micro‐organisms was also examined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A series of new diamagnetic ruthenium(II) complexes of the type [RuCl(CO)(B)(L)] (where B = PPh3, AsPh3 or Py; L = monobasic tridentate Schiff base ligands derived from o‐aminophenol or o‐aminothiophenol with ethylacetoacetate or ethylbenzoylacetate) have been synthesized and these complexes were characterized by physico‐chemical and spectroscopic methods. Cyclic voltammograms of all the complexes show quasi‐reversible oxidation in the range 0.24–1.05 V and the quasi‐reversible reduction in the range ? 0.14 to ? 0.51 V. The observed redox potentials show little variation with respect to the replacement of triphenyl phosphine/arsine by pyridine. The complexes were tested as catalysts in the oxidation of primary and secondary alcohols using molecular oxygen at room temperature and also in C? C coupling reactions. Further, the antibacterial properties of the free ligands and their metal complexes were evaluated against certain bacteria such as Escherichia coli and Staphylococcus aureus. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

The triply halide-bridged binuclear complexes [Ru2Cl5(CO)(AsPh3)3] (AsPh3 = triphenylarsine), [Ru2Cl5(CO)(PPh3)2(AsPh3)] (PPh3 = triphenylphosphine), [Ru2Cl5(CO)(AsPh3)2(PPh3)], [Ru2 Br5(CO)(PPh3)3], [Ru2Cl5(CO)(P{p-tol}3)2(PPh3)] (P{p-tol}3 = tri-p-tolylphosphine) and [Ru2 Br2Cl3(PPh3)2(AsPh3)] were prepared from the precursor compounds ttt-[RuX2(CO)2(P)2] (X = Cl or Br) and [RuY3(P')2S]·S (Y = Cl or Br; P=PPh3, AsPh3 or P{p- tol}3 and P' = AsPh3 or PPh3; S=DMA or MeOH, where DMA = N,N'-dimethylacetamide). The molecular structures of the binuclear complexes [Ru2Cl5(CO)(AsPh3)3] (P21/c), [Ru2Br5(CO)(PPh3)3] (P21/c) and ttt-[RuCl2(CO)2(PPh3)2] (P1) were determined by X-ray diffraction methods. The complexes are always formed by two Ru atoms bridged through three halide anions, two of which are × type (from the RuII precursor) and the other is Y type (from the rutheniumIII precursor) confirming our previously suggested mechanism for obtaining this class of complexes. The RuII atom is also coordinated to a carbon monoxide molecule and two P ligands from the ttt-starting isomer whereas the RuIII atom is bonded to two non-bridging Y halides and one P' molecule. The presence of RuIII was confirmed by EPR data, a technique that was also useful to suggest the symmetry of the complexes. The absence of intervalence charge-transfer transitions (IT) in the near infrared spectrum confirms that the binuclear complexes have localized valence. The IR spectra of the complexes show; (CO) bands close to 1970 cm?1 and ν(Ru-Cl) or(Ru-Br) bands at about 230–380 cm?1 corresponding to halides at terminal or bridged positions. Two widely separated redox processes, RuII/RuII←RuII/RuIII→RuIII/RuIII, were observed by cyclic voltammetry and differential pulse voltammetry.  相似文献   

15.
Three ruthenium(II) complexes, [Ru(CO)Cl(PPh3)L], [Ru(CO)Cl(AsPh3)L] and [Ru(CO)Cl(Py)L], were synthesized from the reactions of 2-(benzothiazol-2-yliminomethyl)-phenol (HL) with [RuHCl(CO)B(EPh3)2], where B = PPh3, AsPh3 or pyridine, and E = P or As. All the complexes have been characterized by physicochemical and spectroscopic methods. The structure of the free ligand HL was determined by single crystal X-ray diffraction. The binding of the free ligand and its complexes with CT-DNA was studied using electronic absorption spectroscopy. In addition, the free ligand and its complexes were subjected to antioxidant activity tests, which showed that they all possess significant scavenging effects against DPPH and OH radicals. The in vitro cytotoxicities of the compounds were assessed using tumor (HeLa and MCF-7) cell lines.  相似文献   

16.
New hexa‐coordinated ruthenium (III) complexes of the type [RuX(EPh3)2(L)] (X = Cl or Br; L = dibasic tridentate Schiff base ligand; E = P or As) have been synthesized by the reactions of [RuCl3(PPh3)3], [RuCl3(AsPh3)3] or [RuBr3(AsPh3)3] with the appropriate Schiff base ligands derived by the condensation of salicylaldehyde and 2‐hydroxy‐1‐naphthaldehyde with N(4) substituted thiosemicarbazones. All the new complexes were characterized using various physico‐chemical methods such as elemental analyses, infrared, electron paramagnetic resonance (EPR) spectroscopy, magnetic moment and cyclic voltammetry. Based on the extended X‐ray absorption fine structure (EXAFS) analysis, an octahedral structure has been confirmed for the complexes. The new complexes have been subjected to the catalytic activity and antibacterial studies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Unsymmetrically-substituted ruthenium(II) Schiff-base complexes, [Ru(CO)(B)(L x )] [B = PPh3, AsPh3 or Py; L x = dianion of tetradentate unsymmetrical Schiff-base ligand; x = 4–7, L4 = salen-o-hyac, L5 = valen-o-hyac, L6 = salphen-o-hyac, L7 = valen-2-hacn], were prepared and characterized by analytical, IR, electronic, and 1H NMR spectral studies. The new complexes were tested for their catalytic activity towards the oxidation of benzylalcohol to benzaldehyde.  相似文献   

18.
The reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip, or mor) and dehydroacetic acid thiosemicarbazone (abbreviated as H2dhatsc where H2 stands for the two dissociable protons) in benzene under reflux afford a series of new ruthenium(II) carbonyl complexes containing dehydroacetic acid thiosemicarbazone of general formula [Ru(dhatsc)(CO)(B)(EPh3)] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip or mor; dhatsc = dibasic tridentate dehydroacetic acid thiosemicarbazone). All the complexes have been characterized by elemental analyses, FT-IR, UV-Vis, and 1H NMR spectral methods. The thiosemicarbazone of dehydroacetic acid behaves as dianionic tridentate O, N, S donor and coordinates to ruthenium via phenolic oxygen of dehydroacetic acid, the imine nitrogen of thiosemicarbazone and thiol sulfur. In chloroform solution, all the complexes exhibit metal-to-ligand charge transfer transitions (MLCT). The crystal structure of one of the complexes [Ru(dhatsc)(CO)(PPh3)2] (1) has been determined by single crystal X-ray diffraction which reveals the presence of a distorted octahedral geometry in the complexes. All the complexes exhibit an irreversible oxidation (RuIII/RuII) in the range 0.76-0.89 V and an irreversible reduction (RuII/RuI) in the range −0.87 to −0.97 V. Further, the free ligand and its ruthenium complexes have been screened for their antibacterial and antifungal activities. The complexes show better activity in inhibiting the growth of bacteria Staphylococcus aureus and Escherichia coli and fungus Candida albicans and Aspergillus niger. These results made it desirable to delineate a comparison between free ligand and its ruthenium complexes.  相似文献   

19.
The reactions of ruthenium(II) complexes, [RuHCl(CO)(PPh3)2(B)] [B = PPh3, pyridine (py) or piperidine (pip)], with bidentate Schiff base ligands derived by condensing salicylaldehyde with aniline, o-, m- or p-toluidine have been carried out. The products were characterised by analytical, i.r., electronic, 1H-n.m.r. and 31P-n.m.r. spectral studies and are formulated as [RuCl(CO)(L)(PPh3)(B)] (L = Schiff base anion; B = PPh3, py or pip). An octahedral structure has been tentatively proposed for the new complexes. The Schiff bases and the new complexes were tested in vitro to evaluate their activity against the fungus Aspergillus flavus.  相似文献   

20.
Bis[3-(dimethylarsino)propyl]phenylarsine, (tas), reacts with trans-Ir(CO)(EPh3)2 X (E = P, As; X = F, Cl, Br, I) to yield the (Ir(CO)(tas)] X complexes. In contrast, the similar ligand bis[3-(dimethylarsino)propyl]phenylphosphine, (dap), reacts with trans-Ir(CO)(EPh3)2X (E = P, As; X = Cl, Br, I) to yield a mixture of [Ir(CO)(dap)X] and [Ir(CO)(dap)]X, and with trans Ir(CO)(EPh3)2F (E = P, As) to yield solely [Ir(CO)(dap)F]. The cations [Ir(CO)(L)]+ (L = tas, dap) readily yield tetraphenylborate derivatives, [Ir(CO)(L)]BPh4. The oxygenation of [Ir(CO)(tas)]+ in solution proceeds almost to completion after 15 h, whereas [Ir(CO)(dap)]+ does not appear to undergo oxygenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号