首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aluminium complexes bearing the N,N-chelating ligand 1,4-bis(2-hydroxy-3,5-di-tert-butyl)piperazine (1) have been synthesised. Both monometallic and bimetallic aluminium methyl complexes (2 and 3, respectively) were prepared by treatment of 1 with the appropriate amount of AlMe3. Complex 2 can be converted to 3 by addition of excess AlMe3. Bimetallic aluminium-ethyl complex 4 was also prepared. Treatment of 1 with AlEt2Cl afforded the monometallic chloride complex 5. Treatment of this latter complex with potassium alkoxides (KOR, R = Me, Et, iPr, tBu) or AgOTf afforded the corresponding aluminium alkoxide complexes (6, R = Et; 7, R = Me; 8, R = iPr; 9, R = tBu; 10, R = OTf) in good yields. Aluminium ethoxide complex 6 was also synthesised by treatment of 1 with AlEt2OEt. All of these complexes were tested as potential catalysts in the ring-opening polymerisation of rac-lactide and caprolactone with limited success.  相似文献   

2.
Chemical investigation of the endophytic fungus Diaporthe melonis, isolated from Annona squamosa, yielded two new dihydroanthracenone atropodiastereomers, diaporthemins A (1) and B (2), together with the known flavomannin-6,6′-di-O-methyl ether (3). The structures of the new compounds were established on the basis of extensive 1D and 2D NMR spectroscopy, as well as by high resolution mass spectrometry and by CD spectroscopy. Compounds 13 were tested for their antimicrobial activity against a multi-resistant clinical isolate of Staphylococcus aureus 25697, a susceptible reference strain of S. aureus ATCC 29213 and against Streptococcus pneumoniae ATCC 49619. Compound 3 strongly inhibited S. pneumonia growth with a MIC value of 2 μg/mL, and showed moderate activity against the S. aureus multi-resistant clinical isolate and susceptible reference strain (MIC 32 μg/mL), whereas 1 and 2 were not active against the tested strains.  相似文献   

3.
Competitive chlorination of p-substituted triarylbismuthanes 1 [(p-XC6H4)3Bi; a: X = OMe, c: Cl, d: CO2Et, e: CF3, f: CN, g: NO2] and trimesitylbismuthane (2,4,6-Me3C6H2)3Bi 1h by sulfuryl chloride was carried out against 1b (X = H) and the effect of these substituents on the formation of triarylbismuth dichlorides 2 was studied. The relative ratios 2/2b decreased with increasing electron-withdrawing ability of the substituents (2a/2b = 53/47, 2c/2b = 33/67, 2d/2b = 35/65, 2e/2b = 29/71, 2f/2b = 16/84, 2g/2b = 0/100, 2h/2b = 46/54), indicating a lowering of reactivity of the lone pair on the bismuth atom. Pd-Catalyzed degradation of 2a-g and their difluorides 3 giving biaryls 4 was promoted by the electron-withdrawing p-substituents in the equatorial aryl groups but suppressed by the more electronegative fluorine atoms in the apical positions. This is in fairly good accord with the stability of the trigonal bipyramidal geometry. The 13C NMR study of 1-3 showed that the signals due to the ipso carbons (C1) attached to the bismuth atom shift downfield with increasing electron-withdrawing nature of the p-substituents. No such tendency was observed in other aromatic ring carbons. The electronic effect on the C1 atoms, similar to that on the chlorination of 1 and degradation of 2 and 3, indicates the significant participation of the C1 atoms in these reactions through the Bi-C1 bonds.  相似文献   

4.
A new chromene, (S)-banchromene (1), together with seven known compounds, ergosterol, beauvericin (2), fusaproliferin (3), radicinin (4), poly(3-hydroxybutyric acid) (PHB, 5), N-methylpyrrolidone and an inseparable mixture of isochromene derivatives 6a, 6b, were isolated from a culture of Fusarium sp. strain CAMKT24b1, an endophytic fungus from the leaves and twigs of Piper guineense (Piperaceae). The structures of these metabolites were elucidated on the basis of their spectroscopic data; the absolute configuration of 1 was determined by ab initio-calculation of the optical rotation. In tests with the zoospores of the grapevine downy mildew pathogen Plasmopara viticola, compounds 14 showed moderate to high levels of motility-impairing activity at concentrations as low as 2.5 μg/mL. Compound 2 was the most active, exhibiting both motility-halting and lytic activities. Furthermore, compounds 2 and 3 displayed significant cytotoxic activity against brine shrimp larvae (Artemia salina) at 10 μg/mL. This is the first report on motility inhibitory and lytic activities of metabolites from an endophytic Fusarium species against the zoospores of the downy mildew pathogen P. viticola.  相似文献   

5.
For N-(thio)phosphorylthioureas of the common formula RC(S)NHP(X)(OiPr)2HLI (R = N-(4′-aminobenzo-15-crown-5), X = S), HLII (R = N-(4′-aminobenzo-15-crown-5), X = O), HLIII (R = PhNH, X = S), HLIV (R = PhNH, X = O), and (N,N′-bis-[C(S)NHP(S)(OiPr)2]2-1,10-diaza-18-crown-6) H2LV, salts LiLI,III,IV, NaLIIV, KLIIVM2LV (M = Li+, Na+, K+), Ba(LI,III,IV)2, and BaLV have been synthesized and investigated. Compounds NaLI,II quantitatively drop out as a deposit in ethanol medium, allowing the separation of Na+ and K+ cations. This effect is not displayed for the other compounds. The crystal structures of HLIII and the solvate of the composition [K(Me2CO)LIII] have been investigated by X-ray crystallography.  相似文献   

6.
A new metamorphosis-enhancing macrodiolide, luminaolide (1), was isolated from the crustose coralline algae (CCA) Hydrolithonreinboldii. Its structure was determined by spectroscopic analysis. A fraction (1.30 μg/mL) eluted with 80% aqueous MeOH by ODS gel column chromatography of the same CCA extract induced larval metamorphosis (25.9 ± 7.4%) against Leptastrea purpurea, and its metamorphosis-inducing activity was further enhanced to 92.6 ± 2.9% with the addition of 1 (25.6 ng/mL).  相似文献   

7.
N-Heterocyclic carbene ligands (NHC) were metalated with Pd(OAc)2 or [Ni(CH3CN)6](BF4)2 by in situ deprotonation of imidazolium salts to give the N-olefin functionalized biscarbene complexes [MX2(NHC)2] 3-7 (3: M = Pd, X = Br, NHC = 1,3-di(3-butenyl)imidazolin-2-ylidene; 4: M = Pd, X = Br, NHC = 1,3-di(4-pentenyl)imidazolin-2-ylidene; 5: M = Pd, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 6: M = Ni, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 7: M = Ni, X = I, NHC = 1-methyl-3-allylimidazolin-2-ylidene). Molecular structure determinations for 4-7 revealed that square-planar complexes with cis (5) or trans (4, 6, 7) coordination geometry at the metal center had been obtained. Reaction of nickelocene with imidazolium bromides afforded the η5-cyclopentadienyl (η5-Cp) monocarbene nickel complexes [NiBr(η5-Cp)(NHC)] 8 and 9 (8: NHC = 1-methyl-3-allylimidazolin-2-ylidene; 9: NHC = 1,3-diallylimidazolin-2-ylidene). The bromine abstraction in complexes 8 and 9 with silver tetrafluoroborate gave complexes [NiBr(η5-Cp)(η3-NHC)] 10 and 11. The X-ray structure analysis of 10 and 11 showed a trigonal-pyramidal coordination geometry at the nickel(II) center and coordination of one N-allyl substituent.  相似文献   

8.
The metal β-diketiminato ligand-to-metal binding modes are briefly reviewed, with reference particularly to our previous work on metal complexes using the ligands [{N(R1)C(R2)}2CH] (R1 = SiMe3 = R and R2 = Ph; or R1 = C6H3Pri2-2,6 and R2 = Me). The syntheses of the β-diketimines H[{N(R)C(Ar)}2CH] 1 (Ar = Ph) and 2 (Ar = C6H4Me-4) and the ansa-CH2-bridged bis(β-diketimine)s 3 (Ar = Ph) and 4 (Ar = C6H4Me-4) are reported. Thus, from the appropriate compound Li[{N(R)C(Ar)}2CH] and H2O, (CH2Br)2 or CH2Br2 the product was 2, 3 or 4. Compound 1 was prepared from K[{N(R)C(Ph)}2CH] and (CH2Br)2. Each of 3 or 4 with LiBun surprisingly yielded the bicyclic dilithium compound 5 (Ar = Ph) or 6 (Ar = C6H4Me-4) in which each of the β-diketiminato fragments is an N,N′-bridge between the two lithium atoms and the CH2 moiety joins the two ligands through their central carbon atoms. However, 4 with AlMe3 yielded the expected ansa-CH2-bridged-bis[(β-diketiminato)(dimethyl)alane] 7, which was also obtained from 6 and Al(Cl)Me2. X-ray structures of the known compounds 2 and 3, and of 5, 6 and 7 are presented; the 1H NMR spectra of 6 in toluene-d8 show that there is restricted rotation about the NC-C6H4Me-4 bond.  相似文献   

9.
The hydrosulfido complexes CpRu(L)(L′)SH react with one equivalent of O-alkyl oxalyl chlorides (ROCOCOCl) to form the corresponding O-alkylthiooxalate complexes CpRu(L)(L′)SCOCO2R (L = L′ = PPh3 (1), (2); L = PPh3, L′ = CO (3); R = Me (a), Et (b)). The reactions of the hydrosulfido complexes with half equivalent of oxalyl chloride produce the bimetallic complexes [CpRu(L)(L′)SCO]2 (L = L′ = PPh3 (4), (5); L = PPh3, L′ = CO (6)). The crystal structures of CpRu(PPh3)2SCOCO2Me (1a) and CpRu(dppe)SCOCO2Et (2b) are reported.  相似文献   

10.
MgMe2 (1) was found to react with 1,4-diazabicyclo[2.2.2]octane (dabco) in tetrahydrofuran (thf) yielding a binuclear complex [{MgMe2(thf)}2(μ-dabco)] (2). Furthermore, from reactions of MgMeBr with diglyme (diethylene glycol dimethyl ether), NEt3, and tmeda (N,N,N′,N′-tetramethylethylenediamine) in etheral solvents compounds MgMeBr(L), (L = diglyme (5); NEt3 (6); tmeda (7)) were obtained as highly air- and moisture-sensitive white powders. From a thf solution of 7 crystals of [MgMeBr(thf)(tmeda)] (8) were obtained. Reactions of MgMeBr with pmdta (N,N,N′,N″,N″-pentamethyldiethylenetriamine) in thf resulted in formation of [MgMeBr(pmdta)] (9) in nearly quantitative yield. On the other hand, the same reaction in diethyl ether gave MgMeBr(pmdta) · MgBr2(pmdta) (10) and [{MgMe2(pmdta)}7{MgMeBr(pmdta)}] (11) in 24% and 2% yield, respectively, as well as [MgMe2(pmdta)] (12) as colorless needle-like crystals in about 26% yield. The synthesized methylmagnesium compounds were characterized by microanalysis and 1H and 13C NMR spectroscopy. The coordination-induced shifts of the 1H and 13C nuclei of the ligands are small; the largest ones were found in the tmeda and pmdta complexes. Single-crystal X-ray diffraction analyses revealed in 2 a tetrahedral environment of the Mg atoms with a bridging dabco ligand and in 8 a trigonal-bipyramidal coordination of the Mg atom. The single-crystal X-ray diffraction analyses of [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) showed them to be monomeric with five-coordinate Mg atoms. The square-pyramidal coordination polyhedra are built up of three N and two C atoms in 12 and three N and two Br atoms in 13. The apical positions are occupied by methyl and bromo ligands, respectively. Temperature-dependent 1H NMR spectroscopic measurements (from 27 to −80 °C) of methylmagnesium bromide complexes MgMeBr(L) (L = thf (4); diglyme (5); NEt3 (6); tmeda (7)) in thf-d8 solutions indicated that the deeper the temperature the more the Schlenk equilibria are shifted to the dimethylmagnesium/dibromomagnesium species. Furthermore, at −80 °C the dimethylmagnesium compounds are predominant in the solutions of Grignard compounds 4-6 whereas in the case of the tmeda complex7 the equilibrium constant was roughly estimated to be 0.25. In contrast, [MgMeBr(pmdta)] (9) in thf-d8 revealed no dismutation into [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) even up to −100 °C. In accordance with this unexpected behavior, 1:1 mixtures of 12 and 13 were found to react in thf at room temperature yielding quantitatively the corresponding Grignard compound 9. Moreover, the structures of [MgMeBr(pmdta)] (9c), [MgMe2(pmdta)] (12c), and [MgBr2(pmdta)] (13c) were calculated on the DFT level of theory. The calculated structures 12c and 13c are in a good agreement with the experimentally observed structures 12 and 13. The equilibrium constant of the Schlenk equilibrium (2 9c ? 12c + 13c) was calculated to be Kgas = 2.0 × 10−3 (298 K) in the gas phase. Considering the solvent effects of both thf and diethyl ether using a polarized continuum model (PCM) the corresponding equilibrium constants were calculated to be Kthf = 1.2 × 10−3 and Kether = 3.2 × 10−3 (298 K), respectively.  相似文献   

11.
Four novel highly oxygenated trinortriterpenoids, sphenalactones A-D (1-4), were isolated from the leaves and stems of Schisandra sphenanthera and their structures were elucidated by extensive analysis of 1D and 2D NMR data. Compounds 1-4 featured a C27 backbone and showed anti-HIV-1 activity with EC50 values in the range of 35.5-89.1 μg/mL with low cytotoxicity against C8166 cells (CC50 > 200 μg/mL).  相似文献   

12.
2,4,6-Triphenylpyrylium tetrafluoroborate (TPPBF4)-sensitized photoinduced electron-transfer (PET) reactions of 1,4-diaryl-2,3-dioxabicyclo[2.2.2]octanes 5 (a: Ar1 = Ar2 = p-MeOC6H4, b: Ar1 = Ar2 = p-MeC6H4, c: Ar1 = Ar2 = Ph) underwent novel fragmentation through their radical cations to give 1,4-diarylbutan-1,4-diones 6 accompanied by elimination of ethylene. On the other hand, 4-aryl-cyclohex-3-en-1-ones 7, p-substituted phenols 8, and 4-aryl-4-aryloxycyclohexanones 9 were produced through proton-catalyzed pathways when the PET reactions of 5 were performed in the absence of a certain base such as 2,6-di-tert-butylpyridine (DTBP). Particularly, the formation of 9 is consistent with the novel cationic rearrangement involving nucleophilic O-1,2-aryl shifts and C-1,4-aryl shifts.  相似文献   

13.
High-speed counter-current chromatography (HSCCC) with a two-phase solvent system (hexane–ethanol–acetonitrile–water 10:8:1:1, v/v) was applied to examine the leaves of Hortia oreadica, which afforded the known limonoid guyanin (1), the alkaloids rutaecarpin (2) and dictamnine (6), the dihydrocinnamic acid derivatives methyl 5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-propanoate (3), 5,8-dimethoxy-2,2-dimethyl-2H-1-benzopyran-6-propanoic acid (4), together with the new E-3,4-dimethoxy-α(3-hydroxy-4-carbomethoxyphenyl)cinnamic acid (5). The recovery of compounds 1–6 was determined by comparison with LC-atmospheric pressure chemical ionization MS/MS data: 66.2%, 93.1%, 102.5%, 101.2%, 99.0% and 84.9%, respectively. Compound 3 showed IC50 of 23.6 μM against Plasmodium falciparum and 15.6 μM against Trypanosoma brucei rhodesienses and was not toxic to KB cells (IC50 > 100 μM).  相似文献   

14.
Treatment of the chloro-bridged dinuclear compounds [{Pd[RC6H3C(H)NCy-C2,N]}(μ-Cl)]2 (R = 4-(COH), 1; R = 5-(COH), 2) with bidentate phosphorus or arsenic diphosphines or diarsine ligands in 1:1 molar ratio gave the dinuclear complexes [{Pd[RC6H3C(H)NCy-C2,N](Cl)}2{μ-(o-Tol)2P(CH2)2P(o-Tol)2}] (R = 4-(COH), 3; R = 5-(COH), 4), [{Pd[RC6H3C(H)NCy-C2,N](Cl)}2{μ-Ph2PC4H2(NH)CH2PPh2}] (R = 4-(COH), 5; R = 5-(COH), 6) and [{Pd[RC6H3C(H)NCy-C2,N](Cl)}2{μ-Ph2As(CH2)2AsPh2}] (R = 4-(COH), 7; R = 5-(COH), 8) with the homobidentate [P,P] and [As,As] ligands in a bridging mode. Treatment of 1 and 2 with the aminophosphine Ph2P(CH2)2NH2 yields the dinuclear complexes [{Pd[RC6H3C(H)NCy-C2,N](Cl)}2{μ-Ph2P(CH2)2NH2}] (R = 4-(COH), 9; R = 5-(COH), 10). The analogous reactions carried out in a 1:2 molar ratio, in the presence of NH4PF6 or NaClO4, gave the mononuclear compounds [Pd{RC6H3C(H)NCy-C2,N}{(o-Tol)2P(CH2)2P(o-Tol)2-P,P}][PF6] (R = 4-(COH), 11; R = 5-(COH), 12), [Pd{RC6H3C(H)NCy-C2,N}{Ph2PC4H2(NH)CH2PPh2-P,P}][ClO4] (R = 4-(COH), 13; R = 5-(COH), 14) and [Pd{RC6H3C(H)NCy-C2,N}{Ph2As(CH2)2AsPh2-As,As}][ClO4](R = 4-(COH), 15; R = 5-(COH), 16), with the [P,P] and [As,As] ligands chelated to the palladium atom.Treatment of 2 with Ph2P(CH2)3NH2 in a 1:2 molar ratio in acetone in the presence of NH4PF6 afforded the mononuclear compound [Pd{5-(COH)C6H3C(H)NCy-C2,N}{Ph2P(CH2)3N(Me2)-P,N}][PF6], 17, via intermolecular condensation between the aminophosphine and the solvent. Condensation was precluded using toluene as solvent to give [Pd{RC6H3C(H)NCy-C2,N}{Ph2P(CH2)nNH2-P,N}][PF6], (n = 3, R = 5-(COH), 18; n = 2, R = 4-(COH), 19; n = 2, R = 5-(COH), 20). Treatment of 1 and 2 with Ph2P(C6H4)CHO in a 1:2 molar ratio in the presence of NH4PF6 gave the mononuclear complexes [Pd{RC6H3C(H)NCy-C2,N}{2-(Ph2P)C6H4CHO-P,O}][PF6] (R = 4-(COH), 21; R = 5-(COH), 22) with the palladium atom bonded to four different atoms (C, N, P, O) and a chelating [P,O] ligand. The crystal structures of compounds 7, 11, 15 and 21 have been determined by X-ray crystallography.  相似文献   

15.
The salts [S(NMe2)3][MF6] (M = Nb, 2a; M = Ta, 2b) and [S(NMe2)3][M2F11] (M = Nb, 2c; M = Ta, 2d) have been prepared by reacting MF5 (M = Nb, 1a; M = Ta, 1b) with [S(NMe2)3][SiMe3F2] (TASF reagent) in the appropriate molar ratio. The solid state structure of 2b has been ascertained by X-ray diffraction. The 1:1 molar ratio reactions of 1a with a variety of organic compounds (L) give the neutral adducts NbF5L [L = Me2CO, 3a; L = MeCHO, 3b; L = Ph2CO, 3c; L = tetrahydrofuran (thf), 3d; L = MeOH, 3e; L = EtOH, 3f; L = HOCH2CH2OMe, 3g; L = Ph3PO, 3h; L = NCMe, 3i] in good yields. The complexes MF5L [M = Nb, L = HCONMe2, 3j; M = Nb, L = (NMe2)2CO, 3k; M = Ta, L = (NMe2)2CO, 3l; M = Nb, L = OC(Me)CHCMe2, 3m] have been detected in solution in admixture with other unidentified products, upon 2:1 molar reaction of 1 with the appropriate reagent L. The ionic complexes [NbF4(tht)2][NbF6], 4a, and [NbF4(tht)2][Nb2F11], 4b, have been obtained by combination of tetrahydrothiophene (tht) and 1a, in 1:1 and 2:3 molar ratios, respectively. The treatment of 1 with a two-fold excess of L leads to the species [MF4L4][MF6] [M = Nb, L = HCONMe2, 5a; M = Ta, L = HCONMe2, 5b; M = Nb, L = thf, 5c; M = Ta, L = thf, 5d; M = Nb, L = OEt2, 5e]. The new complexes have been fully characterised by NMR spectroscopy. Moreover, the revised 19F NMR features of the known compounds MF5L [M = Ta, L = Me2CO, 3n; M = Ta, L = Ph2CO, 3o; M = Ta, L = MePhCO, 3p; M = Ta, L = thf, 3q; M = Nb, L = CH3CO2H, 3r; M = Nb, L = CH2ClCO2H, 3s; M = Ta, L = CH2ClCO2H, 3t], TaF4(acac), TaF4(Me-acac) and [TaF(Me-acac)3][TaF6] (Me-acac = methylacetylacetonato anion) are reported.  相似文献   

16.
17.
Kehokorins A (1)-C (3), three novel dibenzofurans, have been isolated from field-collected fruit bodies of the myxomycete, Trichia favoginea var. persimilis, and their structures were elucidated by spectral data. Kehokorin A (1) was a α-l-rhamnopyranoside of kehokorin B (2), while kehokorin C (3) was a 1-demethoxy analog of 2. Kehokorin A (1) was cytotoxic against HeLa cells with an IC50 value of 1.5 μg/mL.  相似文献   

18.
Ken W.L. Yong 《Tetrahedron》2008,64(28):6733-6738
Chemical analysis of a chromodorid nudibranch has provided two new diterpene metabolites 1 and 2 together with the known metabolites 3-6. In an NMR study, the dialdehyde metabolite 1 underwent facile conversion to cyclic hemiacetals 8-9 on exposure to methanol, a reaction that mimics chemical conversions that may occur during the isolation of some diterpenes from molluscs and sponges. Compounds 1, 2, 5 and 8 showed moderate cytotoxicity against P388 cells (IC50=1.2-4.1 μg/mL).  相似文献   

19.
A series of NNOO-tetradentate enolic Schiff-base ligands were prepared where ligand L1 = bis(benzoylacetone)propane-1,2-diimine, L2 = bis(acetylacetone)-propane-1,2-diimine, L3 = bis-(acetylacetone)cyclohexane-1,2-diimine. Their further reaction with aluminum tris(ethyl) formed complexes LAlEt (1a, 2a and 3a). The solid structure of complexes 1a, 2a and 3a confirmed by X-ray single crystal analysis manifested that these complexes were all monomeric and five-coordinated with an aluminum atom in the center. The configurations of these complexes varied from trigonal bipyramidal geometry (tbp) to square pyramidal geometry (sqp) due to their different auxiliary ligand architectures. 1H NMR spectra indicated that all these complexes retained their configuration in solution states. Their catalytic properties to polymerize racemic-lactide (rac-LA) in the presence of 2-propanol were also studied. The diimine bridging parts as well as the diketone segment substituents had very close relationship with their performance upon the polymerization process. All these complexes gave moderately isotactic polylactides with controlled molecular weight and very narrow molecular weight distributions.  相似文献   

20.
Novel substituted 2-[(2-hydroxyethyl)]aminophenols, MeN(CHR1CR2R3OH)(C6H4-o-OH) (2-5), were synthesized by the reaction of 2-methylaminophenol with corresponding oxiranes. Titano-spiro-bis(ocanes) [MeN(CHR1CR2R3O)(C6H4-o-O)]2Ti 6-9 (2, 6, R1 = H, R2 = R3 = Me; 3, 7, R1 = R2 = Ph (treo-), R3 = H; 4, 8, R1 = Ph, R2 = R3 = H; 5, 9, R1 = R2 = H, R3 = Ph) based on [ONO]-ligands have been synthesized. The obtained compounds were characterized by 1H and 13C NMR spectroscopy and elemental analysis data. The complex [Ti(μ2-O){O-o-C6H4}{μ2-CMe2CH2}NMe]6 (10) was obtained by controlled hydrolysis of 6. Molecular structure of 10 was determined by X-ray structure analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号