首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A novel type of coupling reaction has been developed by the palladium-catalyzed reaction of propargylic oxiranes with arylboronic acids, in which anti-substituted 4-aryl-2,3-allenols were produced in a highly diastereoselective manner. A chiral-substituted allene has been synthesized from the reaction of a chiral propargylic oxirane without loss of the chirality.  相似文献   

2.
An enantiospecific coupling of propargylic esters and carbonates with arylboronic acids has been developed using a palladium catalyst. Optically active 1,3-disubstituted allenes were synthesized with high enantiomeric excesses by carrying out the reactions under basic aqueous conditions.  相似文献   

3.
An efficient heterogeneous gold-catalyzed oxidative cross-coupling of propargylic acetates with arylboronic acids has been developed that proceeds smoothly in the presence of Selectfluor and provides a general and powerful tool for the preparation of various valuable α-arylenones with moderate to good yields, excellent E-selectivity, and recyclability of the gold catalyst. The reaction is the first example of heterogeneous gold-catalyzed arylative rearrangement of propargylic acetates for construction of complex enones.  相似文献   

4.
It is known that Rh‐catalyzed reaction of propargylic alcohols with aryl metallic reagents undergoes SN2’‐type reaction affording allenes via a sequential arylmetalation and β‐OH elimination process. Here we report a Rh/Ag‐cocatalyzed reaction of propargylic alcohols with organoboronic acids affording stereo‐defined (E)‐3‐arylallylic alcohols via arylmetalation and protodemetalation with a high regio‐ and stereoselectivity under very mild conditions. The reaction exhibits a good substrate scope and the compatibility with synthetically useful functional groups with no racemization for optically active propargylic alcohols. Such a reaction may also be extended to homopropargylic alcohols with a remarkable regioselectivity and exclusive E‐stereoselectivity.  相似文献   

5.
《中国化学》2018,36(10):916-920
The direct coupling of allylic alcohols with arylboronic acids or their derivatives catalyzed by Ni(cod)2 in the presence of a catalytic amount of base has been developed. A wide variety of allylic substrates or arylboronic acids turned out to be applicable to this catalytic system. The present method does not require the use of ligands for stabilizing the nickel catalyst in most cases or additional activators for activation of allylic alcohols.  相似文献   

6.
It is known that propargylic compounds having an ester and a halide at the propargylic positions react with palladium complexes leading to π-propargylpalladium and allenylpalladium complexes, which cause various transformations in the presence of the reactants. The aim of the present study was to develop novel palladium-catalyzed transformations using propargylic compounds. As diastereoselective reactions of propargylic compounds with bis-nucleophiles, we have developed palladium-catalyzed reactions of propargylic carbonates with 2-substituted cyclohexane-1,3-diones, 2-(2-hydroxyphenyl)acetates and 2-oxocyclohex-3-enecarboxylates. These processes produce highly substituted cyclic compounds in a highly stereoselective manner. Through our studies on the construction of substituted 2,3-allenols by the reactions of propargylic oxiranes, it has been made clear that palladium-catalyzed coupling reactions occur in the presence of arylboronic acids and terminal alkynes. The processes can be carried out in mild conditions to yield substituted 4-aryl-2,3-allenols in a diastereoselective manner. In our attempt to develop CO2-recycling reactions, we developed a methodology for the synthesis of cyclic carbonates by palladium-catalyzed reactions of propargylic carbonates with phenols. Our findings suggested that the process proceeds through a pathway involving decarboxylation-followed fixation of the liberated CO2. Diastereoselective, enantioselective, and enantiospecific construction of cyclic carbonates have been achieved by the application of this methodology.  相似文献   

7.
A new method for the Rh(I)-catalyzed addition of arylboronic acids to N-tert-butanesulfinyl imino esters has been developed for the asymmetric synthesis of arylglycine derivatives. This method provides high yields (61-90%) and diastereoselectivities (>98:2) for a variety of functionalized arylboronic acids. The N-sulfinyl arylglycine ester products are versatile intermediates for further transformations, including selective protecting group removal, conversion to beta-amino alcohols, and direct incorporation into peptides.  相似文献   

8.
A calcium-catalyzed direct reduction of propargylic alcohols and ethers has been accomplished by using triethylsilane as a nucleophilic hydride source. At room temperature a variety of secondary propargylic alcohols was deoxygenated to the corresponding hydrocarbons in excellent yields. Furthermore, for the first time, a catalytic deoxygenation of tertiary propargylic alcohols was generally applicable. The same protocol was suitable for an efficient reduction of secondary as well as tertiary propargylic methyl, benzyl and allyl ethers. Substrates containing an additional keto-, ester or secondary hydroxyl function were reduced with exceptional chemoselectivity at the propargylic position.  相似文献   

9.
Hanyang Cho  Ikyon Kim 《Tetrahedron》2012,68(27-28):5464-5480
We have developed a highly efficient one-pot approach to poly-substituted indolizinones from tertiary propargylic alcohols by using a palladium-catalyzed domino reaction. This reaction is proposed to proceed via successive aminopalladation, reductive elimination, and 1,2-shift. While our previous effort to the same skeleton via 2-iodoindolizinones selected α,β-unsaturated esters, terminal acetylenes, or boronic acids as coupling partners, this strategy introduces new functional groups at the C2 position of indolizinone core with (hetero)aryl halides or diallyl carbonate, expanding the substrate scope for decoration at the C2 site. Furthermore, a new preparation route to tertiary propargylic alcohols for this study is described to rapidly diversify the molecular framework.  相似文献   

10.
A calcium‐catalyzed direct reduction of propargylic alcohols and ethers has been accomplished by using triethylsilane as a nucleophilic hydride source. At room temperature a variety of secondary propargylic alcohols was deoxygenated to the corresponding hydrocarbons in excellent yields. Furthermore, for the first time, a catalytic deoxygenation of tertiary propargylic alcohols was generally applicable. The same protocol was suitable for an efficient reduction of secondary as well as tertiary propargylic methyl, benzyl and allyl ethers. Substrates containing an additional keto‐, ester or secondary hydroxyl function were reduced with exceptional chemoselectivity at the propargylic position.  相似文献   

11.
A novel cationic methanethiolate-bridged diruthenium complex [Cp*RuCl(mu2-SMe)2RuCp*(OH2)]OTf (1e) has been disclosed to promote the catalytic propargylic substitution reaction of propargylic alcohols bearing not only terminal alkyne group but also internal alkyne group with thiols. It is noteworthy that neutral thiolate-bridged diruthenium complexes (1a-1c), which were known to promote the propargylic substitution reactions of propargylic alcohols bearing a terminal alkyne group with various heteroatom- and carbon-centered nucleophiles, did not work at all. The catalytic reaction described here provides a general and environmentally friendly preparative method for propargylic sulfides, which are quite useful intermediates in organic synthesis, directly from the corresponding propargylic alcohols and thiols.  相似文献   

12.
The reaction of propargylic alcohols with carboxylic acid, or phenol derivatives, in the presence of the precatalyst [RuCl(cod)(C5Me5)] leads selectively to a variety of alkylidenecyclobutenes through head-to-head dimerization of propargylic alcohol. The first step is the formation of a cyclobutadiene-ruthenium intermediate resulting from the head-to-head coupling of two molecules of propargylic alcohol. On protonation with strong acids (HPF6, HBF4) dehydration of the cyclobutadiene complex leads to formation of an alkylidenecyclobutenyl-ruthenium complex. The X-ray structure of one such complex, [RuCl(C5Me5)(eta4-R'CCH--CH--C=CR2)] (R'=cyclohexen-1-yl, CR2 = cyclohexylidene) has been determined. Carboxylate is added at the less substituted carbon of the cyclic allylic ligand. DFT/B3 LYP calculations confirm that the intermediate arising from head-to-head coupling of alkyne to the RuClCp* species yields the cyclobutadiene-ruthenium complex more easily with propargylic alcohol than with acetylene.  相似文献   

13.
An enantioselective carboxylative cyclization of propargylic alcohols and CO2 was realized under mild conditions,based on a kinetic resolution strategy,which enabled the synthesis of chiral cyclic carbonates and propargylic alcohols with promising yield and enantioselectivity simultaneously.  相似文献   

14.
A metal-free coupling reaction between 1,3-diarylpropynes and alcohols/phenols/acids via propargylic sp3 C-H bonds activation and C-O bond formation reaction promoted by DDQ was realized. The reaction afforded series of propargyl ethers, propargyl esters and propargyl ketals.  相似文献   

15.
《Mendeleev Communications》2022,32(3):397-398
A simple rhodium-catalyzed addition reaction of aldehydes with arylboronic acids in aqueous γ-valerolactone provides the corresponding benzylic alcohols in moderate to good yields. Other organoboron reagents (boronic esters, aryl-trifluoroborates, etc.) also showed good compatibilities, albeit with relatively lower yields.  相似文献   

16.
The hydration of propargylic alcohols is a green route to synthesize α-hydroxy ketones. Herein a CO2-reactive ionic liquid (IL), [Bu4P][Im], was found to display high performance for catalyzing the hydration of propargylic alcohols in the presence of atmospheric CO2, and a series of propargylic alcohols could be converted into the corresponding α-hydroxy ketones in good to excellent yields. In the IL/CO2 reaction system, CO2 served as a cocatalyst by forming α-alkylidene cyclic carbonates with propargylic alcohols, and was released via the rapid hydrolysis of the carbonates catalysed by the IL. This is the first example of the efficient hydration of propargylic alcohols under metal-free conditions.  相似文献   

17.
A Pd(OAc)2-SEGPHOS combination catalyzes the first enantioselective arylative cyclization of allenyl aldehydes with arylboronic acids to provide cis-fused five- and six-membered cyclic homoallylic alcohols. The excellent diastereo- and enantioselectivity and the fact that the reaction proceeds at room temperature in the absence of any additives make the process highly practical.  相似文献   

18.
Redox isomerization is a synthetically important process because it creates two new functional groups in the product, among which is the isomerization of propargylic alcohols to conjugated enones. Although E-enones have been prepared by this approach, Z-enones could not be accessed. We previously reported DABCO-catalyzed E-selective isomerization of electron-deficient propargylic alcohols to enones and its mechanism. Based on this mechanism, we have now developed the first Z-selective redox isomerization of electron-deficient propargylic alcohol to enone using sodium bicarbonate as a catalyst.  相似文献   

19.
4-Methylene-1,3-oxazolidin-2-ones can be synthesized from propargylic alcohols,primary amines and carbon dioxide under supercritical condition in the absence of any additional catalyst and solvent.Various propargylic alcohols and primary amines were examined.  相似文献   

20.
A mild, versatile, and efficient method for the one-step synthesis of substituted dihydro- and tetrahydroisoquinolines has been developed by the FeCl3.6H2O catalyzed intramolecular allenylation/cyclization reaction of benzylamino-substituted propargylic alcohols, representing the first example of the intramolecular Friedel-Crafts reaction of propargylic alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号