首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oxygen plasma and high pressure H2O vapor heat treatment were applied to fabrication of n-channel polycrystalline silicon thin film transistors (poly-Si TFTs). 13.56 MHz-oxygen-plasma treatment at 250 °C, 100 W for 5 min effectively reduced defect states of 25-nm-thick silicon films crystallized by 30 ns-pulsed XeCl excimer laser irradiation. 1.3×106-Pa-H2O vapor heat treatment at 260 °C for 3 h was carried out in order to improve electrical properties of SiOx gate insulators and SiOx/Si interfaces. A carrier mobility of 470 cm2/V s and a low threshold voltage of 1.8 V were achieved for TFTs fabricated with crystallization at 285 mJ/cm2. Received: 18 November 2002 / Accepted: 25 November 2002 / Published online: 11 April 2003 RID="*" ID="*"Corresponding author. Fax: +81-42/388-7109, E-mail: tsamesim@cc.tuat.ac.jp  相似文献   

2.
 Nd: KGd(WO4)2 thin films were deposited by KrF laser ablation on MgO, YAP, YAG and Si substrates at temperatures up to 800 °C. Film crystallinity, morphology, stoichiometry (WDX, RBS and PIXE), excitation spectra, fluorescence, refractive index and waveguiding properties were studied in connection with deposition conditions. The best films were crystalline and exhibited losses of approximately 5 dB cm-1 at a wavelength of 633 nm. Received: 8 January 2001 / Accepted: 7 November 2001 / Published online: 11 February 2002  相似文献   

3.
50-nm thick amorphous silicon films formed on glass substrates were crystallized by rapid Joule heating induced by an electrical current flowing in 100-nm-thick Cr strips formed adjacently to 200-nm-thick SiO2 intermediate layers. 3-μs-pulsed voltages were applied to the Cr strips. Melting of the Cr strips caused a high Joule heating intensity of about 1×106 W/cm2. Raman scattering measurements revealed complete crystallization of the silicon films at a Joule heating energy of 1.9 J/cm2 via the SiO2 intermediate layer. Transmission electron microscopy measurements confirmed a crystalline grain size of 50–100 nm. 1-μm-long crystalline grain growth was also observed just beneath the edge of the Cr strips. The electrical conductivity increased from 10-5 S/cm to 0.3 S/cm for 7×1017-cm-3-phosphorus-doped silicon films because of activation of the phosphorus atoms because of crystallization. The numerical analysis showed a density of localized defect states at the mid gap of 8.0×1017 cm-3. Oxygen plasma treatment at 250 °C and 100 W for 5 min reduced the density of the defect states to 2.7×1017 cm-3. Received: 3 April 2001 / Accepted: 9 April 2001 / Published online: 25 July 2001  相似文献   

4.
In order to qualitatively and quantitatively analyze the structural defects including the defect types and their concentrations in oxide heteroepitaxial films, a new X-ray rocking-curve width-fitting method was used in the case of doubleCeO2/YSZ/Si (YSZ=yttria-stabilized ZrO2) films that were prepared by pulsed laser deposition. Two main defect types, angular rotation and oriented curvature, were found in both CeO2 and YSZ. Dislocation densities of CeO2 and YSZ, which were obtained from the angular rotations, are functions of the YSZ thickness. A distinct two-step correlation between dislocation densities of CeO2 and YSZ was found that as the dislocation density of YSZ is higher than 2.4×1011 cm-2, the dislocation density of CeO2 shows a high sensitivity with that of YSZ compared with the low relativity in lower dislocation density (<2.4×1011 cm-2). In addition, YSZ always has higher dislocation densities and oriented curvatures than CeO2 in each specimen, which can be attributed to the smaller mosaic domain sizes in YSZ than in CeO2 as observed by high-resolution transmission electron microscopy. Received: 12 August 2002 / Accepted: 14 August 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +81-3/5734-3369, E-mail: chun_hua_chen@hotmail.com  相似文献   

5.
The preparation of high‐quality In2O3:H, as transparent conductive oxide (TCO), is demonstrated at low temperatures. Amorphous In2O3:H films were deposited by atomic layer deposition at 100 °C, after which they underwent solid phase crystallization by a short anneal at 200 °C. TEM analysis has shown that this approach can yield films with a lateral grain size of a few hundred nm, resulting in electron mobility values as high as 138 cm2/V s at a device‐relevant carrier density of 1.8 × 1020 cm–3. Due to the extremely high electron mobility, the crystallized films simultaneously exhibit a very low resistivity (0.27 mΩ cm) and a negligible free carrier absorption. In conjunction with the low temperature processing, this renders these films ideal candidates for front TCO layers in for example silicon heterojunction solar cells and other sensitive optoelectronic applications. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

6.
SrBi2Ta2O9 (SBT) ferroelectric thin films with different preferred orientations were deposited by pulsed laser deposition (PLD). Several methods have been developed to control the preferred orientation of SBT thin films. For SBT films deposited directly on Pt/TiO2/SiO2/Si substrates and in situ crystallized at the deposition temperature, the substrate temperature has a significant impact on the orientation and the remnant polarization (Pr) of the films; a higher substrate temperature benefits the formation of (115) texture and larger grain size. The films deposited on Pt/TiO2/SiO2/Si substrates at 830 °C are (115)-oriented and exhibit 2Pr of 6 μC/cm2. (115)- and (200)-predominant films can be formed by using a La0.85Sr0.15CoO3 (LSCO) buffer layer or by annealing amorphous SBT films deposited on Pt/TiO2/SiO2/Si substrates at 450 °C using rapid thermal annealing (RTA). These films exhibit good electric properties; 2Pr of the films are up to 12 μC/cm2 and 17 μC/cm2, respectively. The much larger 2Pr of the films deposited on the LSCO buffer layer and of the films obtained by RTA than 2Pr of the films deposited on Pt/TiO2/SiO2/Si substrates at 830 °C is attributed to a stronger (200) texture. Received: 30 January 2001 / Accepted: 30 May 2001 / Published online: 25 July 2001  相似文献   

7.
SnO2 thin films have been deposited on glass substrates by pulsed Nd:YAG laser at different oxygen pressures, and the effects of oxygen pressure on the physical properties of SnO2 films have been investigated. The films were deposited at substrate temperature of 500°C in oxygen partial pressure between 5.0 and 125 mTorr. The thin films deposited between 5.0 to 50 mTorr showed evidence of diffraction peaks, but increasing the oxygen pressure up to 100 mTorr, three diffraction peaks (110), (101) and (211) were observed containing the SnO2 tetragonal structure. The electrical resistivity was very sensitive to the oxygen pressure. At 100 mTorr the films showed electrical resistivity of 4×10−2 Ω cm, free carrier density of 1.03×1019 cm−3, mobility of 10.26 cm2 V−1 s−1 with average visible transmittance of ∼87%, and optical band gap of 3.6 eV.  相似文献   

8.
2 (001) epitaxial thin films deposited on Si(001) with yttria-stabilized zirconia buffers have been obtained for the first time at room temperature by pulsed-laser deposition. The influence of oxygen pressure on the crystal quality of CeO2 was studied for the films deposited at 100 °C. The rocking curve full width at half maximum of the CeO2(002) peak for films deposited at room temperature and 100 °C was between 1° and 2°, for oxygen pressures below 3×10-2 mbar. The best crystal quality was obtained at around 3×10-3 mbar. Epitaxial growth at room temperature was confirmed by cross-sectional transmission electron microscopy. Scanning electron microscopy and atomic force microscopy revealed very smooth surfaces for oxygen pressure below 3×10-2 mbar, with rms roughness values around 0.3 nm over 5 μm×5 μm. Received: 25 September 1997/Accepted: 22 April 1998  相似文献   

9.
Si-based metal–ferroelectric–semiconductor (MFS) structures without buffer layers between Si and ferroelectric films have been developed by depositing SrBi2Ta2O9 (SBT) directly on n-type (100)-oriented Si. Some effective processes are adopted to improve the electrical properties of these MFS structures. Contrary to the conventional MFS structures with top electrodes directly on ferroelectrics, our MFS structures have been developed with thin dense SiO2 films deposited between ferroelectric films and top electrodes. Due to the SiO2 films, the leakage current densities of MFS structures are reduced to 2×10-8 A/cm2 under the bias of 5 V. The C-V electrical properties of the MFS structures are greatly improved after annealing at 400 °C in N2 ambient for 1 h. The C-V memory windows are increased to 3 V, which probably results from the decrease of the interface trap density at the Si/SBT interface. Received: 7 September 1999 / Accepted: 24 November 1999 / Published online: 2 August 2000  相似文献   

10.
A parametric study of the growth of La0.5Sr0.5CoO3 (LSCO) thin films on (100) MgO substrates by pulsed-laser deposition (PLD) is reported. Films are grown under a wide range of substrate temperature (450–800 °C), oxygen pressure (0.1–0.9 mbar), and incident laser fluence (0.8–2.6 J/cm2). The optimum ranges of temperature, oxygen pressure, and laser fluence to produce c-axis oriented films with smooth surface morphology and high metallic conductivity are identified. Films deposited at low temperature (500 °C) and post-annealed in situ at higher temperatures (600–800 °C) are also investigated with respect to their structure, surface morphology, and electrical conductivity. Received: 20 November 1998 / Accepted: 6 July 1999 / Published online: 21 October 1999  相似文献   

11.
Transparent conducting antimony-doped tin oxide (SnO2:Sb) films were deposited on organic substrates by r.f. magnetron-sputtering. Polycrystalline films with a resistivity of ≈ 6.5×10-3 Ω cm, a carrier concentration of≈ 1.2×1020 cm-3 and a Hall mobility of ≈ 9.7 cm2 v-1 s-1 were obtained. The average transmittance of these films reached 85% in the wavelength range of the visible spectrum. Received: 20 April 2001 / Accepted: 23 July 2001 / Published online: 17 October 2001  相似文献   

12.
Ferroelectric thin films of BaTiO3 were successfully deposited on SiO2/Si substrate under the optimal rf magnetron sputtering conditions, and their electrical and ferroelectric characteristics were discussed. The memory window, capacitance, threshold voltage and leakage current density of MFIS structure under different frequencies and temperatures were also reported. The variations of ferroelectric capacitance and threshold voltage would be attributed to the as-deposited BaTiO3 films of MFIS structure as the temperature and frequency increased. Besides, the memory window, threshold voltage and leakage current density would be degraded from 4 V, 5 V and 8×10-10 A/cm2 to 2.5 V, 10 V and 5×10-4 A/cm2, respectively, as the temperature increased from 25 to 90 °C. PACS 77.84.-s; 81.15.Cd; 73.40.Qv; 51.50.+v; 67.80.Gb  相似文献   

13.
Spin‐coated zirconium oxide films were used as a gate dielectric for low‐voltage, high performance indium zinc oxide (IZO) thin‐film transistors (TFTs). The ZrO2 films annealed at 400 °C showed a low gate leakage current density of 2 × 10–8 A/cm2 at an electric field of 2 MV/cm. This was attributed to the low impurity content and high crystalline quality. Therefore, the IZO TFTs with a soluble ZrO2 gate insulator exhibited a high field effect mobility of 23.4 cm2/V s, excellent subthreshold gate swing of 70 mV/decade and a reasonable Ion/off ratio of ~106. These TFTs operated at low voltages (~3.0 V) and showed high drain current drive capability, enabling oxide TFTs with a soluble processed high‐k dielectric for use in backplane electronics for low‐power mobile display applications. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Solid oxide fuel cells directly convert the chemical energy of a fuel into electricity. To enhance the efficiency of the fuel cells, the thickness of the gastight solid electrolyte membranes should be as thin as possible. Y2O3-stabilised ZrO2 (YSZ) electrolyte films were prepared by reactive sputtering deposition using Zr/Y targets in Ar/O2 atmospheres. The films were 5 – 8 μm thin and were deposited onto anode substrates made of a NiO/YSZ composite. After deposition of a cathode with the composition La0.65Sr0.35MnO3 the electrochemical properties of such a fuel cell were tested under operating conditions at temperatures between 600 °C and 850 °C. Current-voltage curves were recorded and impedance measurements were performed to calculate apparent activation energies from the fitted resistance data. The conductivity of the YSZ films varied between 4.6·10−6 S/cm and 2.2·10−5 S/cm at 400 °C and the fuel cell gave a reasonable power density of 0.4 W/cm2 at 0.7 V and 790 °C using H2 with 3 % H2O as fuel gas. The gas compositions were varied to distinguish the electrochemical processes of the anode and cathode in the impedance spectra. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

15.
Present p-type ZnO films tend to exhibit high resistivity and low carrier concentration, and they revert to their natural n-type state within days after deposition. One approach to grow higher quality p-type ZnO is by codoping the ZnO during growth. This article describes recent results from the growth and characterization of Zr–N codoped p-type ZnO thin films by pulsed laser deposition (PLD) on (0001) sapphire substrates. For this work, both N-doped and Zr–N codoped p-type ZnO films were grown for comparison purposes at substrate temperatures ranging between 400 to 700 °C and N2O background pressures between 10−5 to 10−2 Torr. The carrier type and conduction were found to be very sensitive to substrate temperature and N2O deposition pressure. P-type conduction was observed for films grown at pressures between 10−3 to 10−2 Torr. The Zr–N codoped ZnO films grown at 550 °C in 1×10−3 Torr of N2O show p-type conduction behavior with a very low resistivity of 0.89 Ω-cm, a carrier concentration of 5.0×1018 cm−3, and a Hall mobility of 1.4 cm2 V−1 s−1. The structure, morphology and optical properties were also evaluated for both N-doped and Zr–N codoped ZnO films.  相似文献   

16.
Thermally stimulated current (TSC) measurements performed in the 100 K–400 K temperature range on Bi4Ti3O12 (BiT) thin films annealed at 550 °C and 700 °C had revealed two trapping levels having activation energies of 0.55 eV and 0.6 eV. The total trap concentration was estimated at 1015 cm−3 for the samples annealed at 550 °C and 3×1015 cm−3 for a 700 °C annealing and the trap capture cross-section was estimated about 10−18 cm2. From the temperature dependence of the dark current in the temperature range 20 °C–120 °C the conduction mechanism activation energy was found to be about 0.956–0.978 eV. The electrical conductivity depends not only on the sample annealing temperature but also whether the measurement is performed in vacuum or air. The results on the dark conductivity are discussed considering the influence of oxygen atoms and oxygen vacancies. Received: 28 January 1998 / Accepted: 8 January 1999 / Published online: 5 May 1999  相似文献   

17.
2 and Si lattices at 380 °C, which was defined as zero-mismatch temperature. The implantation was conducted with a metal vapor vacuum arc (MEVVA) ion implanter at an extraction voltage of 45 kV. Based on a thermal conduction estimation, a temperature rise of 380 °C required the Ni-ion current density to be 35 μA/cm2. For the Si(111) wafers, the high conducting NiSi2 layers were indeed directly formed after Ni-ion implantation with this specific current density to a normal dose of 2×1017 ions/cm2 and the resistivity was as low as 9 μΩ cm. For the Si(111) wafers pre-covered with a 10-nm Ni overlayer, the resistivity of the NiSi2 layers obtained under the same conditions decreased down to about 6 μΩ cm. The superior electrical property of the NiSi2 was thought to be related to its formation temperature, i.e. at a zero-mismatch temperature of 380 °C, which resulted in minimizing the stress and stress-induced defects involved in its formation as well as cooling process. Received: 27 April 1998 / Accepted: 26 October 1998  相似文献   

18.
Gallium antimonide (GaSb) films were deposited onto fused silica and n-Si (100) substrates by coevaporating Ga and Sb from appropriate evaporation sources. The films were polycrystalline in nature. The size and the shape of the grains varied with the change in the substrate temperature during deposition. The average surface roughness of the films was estimated to be 10 nm. Grain boundary trap states varied between 2×1012 and 2.2×1012 cm?2 while barrier height at the grain boundaries varied between 0.09 eV and 0.10 eV for films deposited at higher temperatures. Stress in the films decreased for films deposited at higher temperatures. XPS studies indicated two strong peaks located at ~543 eV and ~1121 eV for Sb 3d3/2 and Ga 2p3/2 core-level spectra, respectively. The PL spectra measured at 300 K was dominated by a strong peak located ~0.55 eV followed by two low intensity peaks ~0.63 eV and 0.67 eV. A typical n-Si/GaSb photovoltaic cell fabricated here indicated V oc~311 mV and J~29.45 mA/cm2, the density of donors (N d)~3.87×1015 cm?3, built in potential (V bi)~0.48 V and carrier life time (τ)~28.5 ms. Impedance spectroscopy measurements indicated a dielectric relaxation time ~100 μs.  相似文献   

19.
Highly conductive and transparent indium tin oxide (ITO) thin films, each with a thickness of 100 nm, were deposited on glass and Si(100) by direct current (DC) magnetron sputtering under an argon (Ar) atmosphere using an ITO target composed of 95% indium oxide and 5% tin oxide for photon-STM use. X-ray diffraction, STM observations, resistivity and transmission measurements were carried out to study the formation of the films at substrate temperatures between 40 and 400 °C and the effects of thermal annealing in air between 200 and 400 °C for between1 and 5 h. The film properties were highly dependent on deposition conditions and on post-deposition film treatment. The films deposited under an Ar atmosphere pressure of ∼1.7×10-3 Torr by DC power sputtering (100 W) at substrate temperatures between 40 and 400 °C exhibited resistivities in the range 3.0–5.7×10-5 Ω m and transmissions in the range 71–79%. After deposition and annealing in air at 300 °C for 1 h, the films showed resistivities in the range 2.9–4.0×10-5 Ω m and transmissions in the range 78–81%. Resistivity and transmission measurements showed that in order to improve conductive and transparent properties, 2 h annealing in air at 300 °C was necessary. X-ray diffraction data supported the experimental measurements of resistivity and transmission on the studies of annealing time. The surface roughness and film uniformity improve with increasing substrate temperature. STM observations found the ITO films deposited at a substrate temperature of 325 °C, and up to 400 °C, had domains with crystalline structures. After deposition and annealing in air at 300 °C for 1 h the films still exhibited similar domains. However, after deposition at substrate temperatures from 40 °C to 300 °C, and annealing in air at 300 °C for 1 h, the films were shown to be amorphous. More importantly, the STM studies found that the ITO film surfaces were most likely to break after deposition at a substrate temperature of 325 °C and annealing in air at 300 °C for 2 or 3 h. Such findings give some inspiration to us in interpreting the effects of annealing on the improvement of conductive and transparent properties and on the transition of phases. In addition, correlations between the conductive/transparent properties and the phase transition, the annealing time and the phase transition, and the conductive/transparent properties and the annealing time have been investigated. Received: 10 July 2000 / Accepted: 27 October 2000 / Published online: 9 February 2001  相似文献   

20.
Nitrogen and boron BF2, and nitrogen, carbon, and boron BF2 high-dose (6×1016–3×1017 cm-2) co-implantation were performed at energies of about 21–77 keV. Subsequent high-temperature annealing processes (600, 850, and 1200 °C) lead to the formation of three and two surface layers respectively. The outer layer mainly consists of polycrystalline silicon and some amorphous material and Si3N4 inclusions. The inner layer is highly defective crystalline silicon, with some inclusions of Si3N4 too. In the N+B-implanted sample the intermediate layer is amorphous. Co-implantation of boron with nitrogen and with nitrogen and carbon prevents the excessive diffusivity of B and leads to a lattice-parameter reduction of 0.7–1.0%. Received: 10 January 2002 / Accepted: 30 May 2002 / Published online: 4 November 2002 RID="*" ID="*"Corresponding author. Fax: +34-91/3974895; E-mail: Lucia.Barbadillo@uam.es  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号