首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A matrix ARn×n is called a bisymmetric matrix if its elements ai,j satisfy the properties ai,j=aj,i and ai,j=an-j+1,n-i+1 for 1?i,j?n. This paper considers least squares solutions to the matrix equation AX=B for A under a central principal submatrix constraint and the optimal approximation. A central principal submatrix is a submatrix obtained by deleting the same number of rows and columns in edges of a given matrix. We first discuss the specified structure of bisymmetric matrices and their central principal submatrices. Then we give some necessary and sufficient conditions for the solvability of the least squares problem, and derive the general representation of the solutions. Moreover, we also obtain the expression of the solution to the corresponding optimal approximation problem.  相似文献   

2.
In this paper we study the extremal problem of finding how many 1 entries an n by n 0-1 matrix can have if it does not contain certain forbidden patterns as submatrices. We call the number of 1 entries of a 0-1 matrix its weight. The extremal function of a pattern is the maximum weight of an n by n 0-1 matrix that does not contain this pattern as a submatrix. We call a pattern (a 0-1 matrix) linear if its extremal function is O(n). Our main results are modest steps towards the elusive goal of characterizing linear patterns. We find novel ways to generate new linear patterns from known ones and use this to prove the linearity of some patterns. We also find the first minimal non-linear pattern of weight above 4. We also propose an infinite sequence of patterns that we conjecture to be minimal non-linear but have Ω(nlogn) as their extremal function. We prove a weaker statement only, namely that there are infinitely many minimal not quasi-linear patterns among the submatrices of these matrices. For the definition of these terms see below.  相似文献   

3.
Given n-square Hermitian matrices A,B, let Ai,Bi denote the principal (n?1)- square submatrices of A,B, respectively, obtained by deleting row i and column i. Let μ, λ be independent indeterminates. The first main result of this paper is the characterization (for fixed i) of the polynomials representable as det(μAiBi) in terms of the polynomial det(μAB) and the elementary divisors, minimal indices, and inertial signatures of the pencil μAB. This result contains, as a special case, the classical interlacing relationship governing the eigenvalues of a principal sub- matrix of a Hermitian matrix. The second main result is the determination of the number of different values of i to which the characterization just described can be simultaneously applied.  相似文献   

4.
Let D(G)=(di,j)n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vi and vj in G. The largest eigenvalue of D(G) is called the distance spectral radius of graph G, denoted by ?(G). In this paper, some graft transformations that decrease or increase ?(G) are given. With them, for the graphs with both order n and k pendant vertices, the extremal graphs with the minimum distance spectral radius are completely characterized; the extremal graph with the maximum distance spectral radius is shown to be a dumbbell graph (obtained by attaching some pendant edges to each pendant vertex of a path respectively) when 2≤kn−2; for k=1,2,3,n−1, the extremal graphs with the maximum distance spectral radius are completely characterized.  相似文献   

5.
Ikramov  Kh. D.  Nazari  A. M. 《Mathematical Notes》2004,75(5-6):608-616
Let A be a complex matrix of order n with n ≥ 3. We associate with A the 3n × 3n matrix $Q\left( {\gamma } \right) = \left( \begin{gathered} A \gamma _1 I_n \gamma _3 I_n \\ 0 A \gamma _2 I_n \\ 0 0 A \\ \end{gathered} \right)$ where $\gamma _1 ,\gamma _2 ,\gamma _3 $ are scalar parameters and γ=(γ123). Let σi, 1 ≤ i ≤ 3n, be the singular values of Q(γ) in the decreasing order. We prove that, for a normal matrix A, its 2-norm distance from the set $\mathcal{M}$ of matrices with a zero eigenvalue of multiplicity at least 3 is equal to $\mathop {max}\limits_{\gamma _1 ,\gamma _2 \geqslant 0,\gamma _3 \in \mathbb{C}} \sigma _{3n - 2} (Q\left( \gamma \right)).$ This fact is a refinement (for normal matrices) of Malyshev's formula for the 2-norm distance from an arbitrary n × n matrix A to the set of n × n matrices with a multiple zero eigenvalue.  相似文献   

6.
Let A denote an n×n matrix with all its elements real and non-negative, and let ri be the sum of the elements in the ith row of A, i=1,…,n. Let B=A?D(r1,…,rn), where D(r1,…,rn) is the diagonal matrix with ri at the position (i,i). Then it is proved that A is irreducible if and only if rank B=n?1 and the null space of BT contains a vector d whose entries are all non-null.  相似文献   

7.
A real symmetric n × n matrix Q is A-conditionally positivesemidefinite, where A is a given m × n matrix, if xQx?0 whenever Ax?0, and is A-conditionally positive definite if strict inequality holds except when x=0. When A is the identity matrix these notions reduce to the well-studied notions of copositivity and strict copositivity respectively. This paper presents finite criteria, involving only the solution of sets of linear equations constructed from the matrices Q,A, for testing both types of conditional definiteness. These criteria generalize known facts about copositive matrices and, when Q is invertible and all row submatrices of A have maximal rank, can be very elegantly stated in terms of Schur complements of the matrix AQ-1A′.  相似文献   

8.
Relative perturbation bounds for the unitary polar factor   总被引:5,自引:0,他引:5  
LetB be anm×n (mn) complex (or real) matrix. It is known that there is a uniquepolar decomposition B=QH, whereQ*Q=I, then×n identity matrix, andH is positive definite, providedB has full column rank. Existing perturbation bounds suggest that in the worst case, for complex matrices the change inQ be proportional to the reciprocal ofB's least singular value, or the reciprocal of the sum ofB's least and second least singular values if matrices are real. However, there are situations where this unitary polar factor is much more accurately determined by the data than the existing perturbation bounds would indicate. In this paper the following question is addressed: how much mayQ change ifB is perturbed to $\tilde B = D_1^* BD_2 $ , whereD 1 andD 2 are nonsingular and close to the identity matrices of suitable dimensions? It is shown that for a such kind of perturbation, the change inQ is bounded only by the distances fromD 1 andD 2 to identity matrices and thus is independent ofB's singular values. Such perturbation is restrictive, but not unrealistic. We show how a frequently used scaling technique yields such a perturbation and thus scaling may result in better-conditioned polar decompositions.  相似文献   

9.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. It is known that connected graphs G that maximize the signless Laplacian spectral radius ρ(Q(G)) over all connected graphs with given numbers of vertices and edges are (degree) maximal. For a maximal graph G with n vertices and r distinct vertex degrees δr>δr-1>?>δ1, it is proved that ρ(Q(G))<ρ(Q(H)) for some maximal graph H with n+1 (respectively, n) vertices and the same number of edges as G if either G has precisely two dominating vertices or there exists an integer such that δi+δr+1-i?n+1 (respectively, δi+δr+1-i?δl+δr-l+1). Graphs that maximize ρ(Q(G)) over the class of graphs with m edges and m-k vertices, for k=0,1,2,3, are completely determined.  相似文献   

10.
The problem of the existence of a J-normal matrix A when its spectrum and the spectrum of some of its (n-1)×(n-1) principal submatrices are prescribed is analyzed. The case of 3×3 matrices is particularly investigated. The results here obtained in the framework of indefinite inner product spaces are in the spirit of those due to Nylen, Tam and Uhlig.  相似文献   

11.
12.
It is shown that the ratio of the area of the convex hull of the fields of values of the (n?1)-by-(n?1) principal submatrices of an n-by-n matrix A to the area of the field of values of A is bounded below by a function of n which approaches 1 as n approaches ∞. Since this convex hull is necessarily contained in the field of values of A, an interpretation is that, asymptotically in the dimension, the field of any given matrix is “filled up” by the fields of the submatrices (collectively). Some new inequalities for the eigenvalues of principal submatrices of hermitian matrices, which are not implied by interlacing, are employed.  相似文献   

13.
14.
Given any k vectors of dimension nk which are mutually orthogonal, it is well known that this matrix can be completed to an n×n orthogonal matrix. Hadamard matrices form a subclass of orthogonal matrices. By contrast it is shown that it is possible to construct Hadamard submatrices with 2t+2 rows that cannot be completed to a Hadamard matrix of order 4t for infinitely many values of t. Some familiarity with Hasse–Minkowski invariants is assumed. A large number of unsolved problems in this area are pointed out.  相似文献   

15.
It is shown that if a nonsingular linear transformation T on the space of n-square real symmetric matrices preserves the commutativity, where n ?3, then T(A) = λQAQt + Q(A)In for all symmetric matricesA, for some scalar λ, orthogonal matrix Q, and linear functional Q.  相似文献   

16.
Let G=(V,E) be a simple, undirected graph of order n and size m with vertex set V, edge set E, adjacency matrix A and vertex degrees Δ=d1d2≥?≥dn=δ. The average degree of the neighbor of vertex vi is . Let D be the diagonal matrix of degrees of G. Then L(G)=D(G)−A(G) is the Laplacian matrix of G and Q(G)=D(G)+A(G) the signless Laplacian matrix of G. Let μ1(G) denote the index of L(G) and q1(G) the index of Q(G). We survey upper bounds on μ1(G) and q1(G) given in terms of the di and mi, as well as the numbers of common neighbors of pairs of vertices. It is well known that μ1(G)≤q1(G). We show that many but not all upper bounds on μ1(G) are still valid for q1(G).  相似文献   

17.
Let G be a connected graph with vertex set V(G) = {v1, v2,..., v n }. The distance matrix D(G) = (d ij )n×n is the matrix indexed by the vertices of G, where d ij denotes the distance between the vertices v i and v j . Suppose that λ1(D) ≥ λ2(D) ≥... ≥ λ n (D) are the distance spectrum of G. The graph G is said to be determined by its D-spectrum if with respect to the distance matrix D(G), any graph having the same spectrum as G is isomorphic to G. We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs are determined by their D-spectra.  相似文献   

18.
We study (0, 1)-matrices which contain no triangles (submatrices of order 3 with row and column sums 2) previously studied by Ryser. Let the row intersection of row i and row j of some matrix, when regarded as a vector, have a 1 in a given column if both row i and row j do and a zero otherwise. For matrices with no triangles, columns sums ?2, we find that the number of linearly independent row intersections is equal to the number of distinct columns. We then study the extremal (0, 1)-matrices with no triangles, column sums ?2, distinct columns, i.e., those of size mx(m2). The number of columns of column sum l is m ? l + 1 and they form a (l ? 1)-tree. The ((m2)) columns have a unique SDR of pairs of rows with 1's. Also, these matrices have a fascinating inductive buildup. We finish with an algorithm for constructing these matrices.  相似文献   

19.
Forn pointsA i ,i=1, 2, ...,n, in Euclidean space ℝ m , the distance matrix is defined as a matrix of the form D=(D i ,j) i ,j=1,...,n, where theD i ,j are the distances between the pointsA i andA j . Two configurations of pointsA i ,i=1, 2,...,n, are considered. These are the configurations of points all lying on a circle or on a line and of points at the vertices of anm-dimensional cube. In the first case, the inverse matrix is obtained in explicit form. In the second case, it is shown that the complete set of eigenvectors is composed of the columns of the Hadamard matrix of appropriate order. Using the fact that distance matrices in Euclidean space are nondegenerate, several inequalities are derived for solving the system of linear equations whose matrix is a given distance matrix. Translated fromMatematicheskie Zametki, Vol. 58, No. 1, pp. 127–138, July, 1995.  相似文献   

20.
Let ∥·∥ be an operator norm and ∥·∥D its dual. Then it is shown that ∥AD? ∑|λi(A)|, where λi(A) are the eigenvalues of A, holds for all matrices A if and only if ∥·∥ is the operator norm subordinate to a Euclidian vector norm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号