首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
A theory of harmonic analysis on a metric group (G, d) is developed with the model of UU, the unitary group of a C1-algebra U, in mind. Essential in this development is the set G?d of contractive, irreducible representations of G, and its concomitant set Pd(G) of positive-definite functions. It is shown that G?d is compact and closed in G?. The set G?d is determined in a number of cases, in particular when G = U(U) with U abelian. If U is an AW1-algebra, it is shown that G?d is essentially the same as U?. Unitary groups are characterised in terms of a certain Lie algebra gu and several characterisations of G = U(U) when U is abelian are given.  相似文献   

2.
Suppose G is a locally compact noncompact group. For abelian such G's, it is shown in this paper that L1(G), C(G), and L(G) always have discontinuous translation-invariant linear forms(TILF's) while C0(G) and Lp(G) for 1 < p < ∞ have such forms if and only if GH is a torsion group for some open σ-compact subgroup H of G. For σ-compact amenable G's, all the above spaces have discontinuous left TILF's.  相似文献   

3.
A spanning subgraph U of a graph G belongs to the set J(G) of fixing subgraphs (see [5]) of G if every embedding of U into G can be extended to an automorphism of G. Clearly GJ(G). G is free if …J(G)… = 1. We establish a connection between Ulam's conjecture and free graphs and continue with an investigation of free graphs.  相似文献   

4.
A matroidal family of graphs is a set M≠Ø of connected finite graphs such that for every finite graph G the edge sets of those subgraphs of G which are isomorphic to some element of M are the circuits of a matroid on the edge set of G. In [9], Schmidt shows that, for n?0, ?2n<r?1, n, r∈Z, the set M(n, r)={G∣G is a graph with β(G)=(G)+r and α(G )>, and is minimal with this property (with respect to the relation ?))} is a matroidal family of graphs. He also describes a method to construct new matroidal families of graphs by means of so-called partly closed sets. In this paper, an extension of this construction is given. By means of s-partly closed subsets of M(n, r), s?r, we are able to give sufficient and necessary conditions for a subset P(n, r) of M(n, r) to yield a matroidal family of graphs when joined with the set I(n, s) of all graphs G∈M(n, s) which satisfy: If H∈P(n, r), then H?G. In particular, it is shown that M(n, r) is not a matroidal family of graphs for r?2. Furthermore, for n?0, 1?2n<r, n, r∈Z, the set of bipartite elements of M(n, r) can be used to construct new matroidal families of graphs if and only if s?min(n+r, 1).  相似文献   

5.
6.
Two common invariants of a graph G are its node clique cover number, θ0(G), and its edge clique cover number, θ1(G). We present in this work a characterization of those graphs for which they and their complements, G?, have θ0(G)=θ1(G) and θ0(G?)=θ1(G?). Graphs satis ying these conditions are shown to constitute a subset of those graphs which we term C-graphs.  相似文献   

7.
We give examples of elliptic curves E/Q and rational points P∈E(Q) such that P is divisible by 4 in E(Qv) for each rational place v but P is not divisible by 4 in E(Q). This is an analogue of a well-known example, with Gm in place of E: namely, P=16 is a rational 8-th power locally almost everywhere, but not globally in Q1=Gm(Q). To cite this article: R. Dvornicich, U. Zannier, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  相似文献   

8.
Let β(G) be the maximal β such that for any edge xy of G there is an independent β-set that contains no neighbours of x and y. Then 0\?β(G)\?α(G)?1 and G is linecritical iff β(G) = α(G)?1. We determine the minimal connected graphs for any given β(G) or for any given β(G) and α(G). We study the case when β(G)??2 and give upper bounds for the minimal valencies. We generalize some results on linecritical graphs of [1] and [4].  相似文献   

9.
The graph G(P) of a polyhedron P has a node corresponding to each vertex of P and two nodes are adjacent in G(P) if and only if the corresponding vertices of P are adjacent on P. We show that if P ? Rn is a polyhedron, all of whose vertices have (0–1)-valued coordinates, then (i) if G(P) is bipartite, the G(P) is a hypercube; (ii) if G(P) is nonbipartite, then G(P) is hamilton connected. It is shown that if P ? Rn has (0–1)-valued vertices and is of dimension d (≤n) then there exists a polyhedron P′ ? Rd having (0–1)-valued vertices such that G(P) ? G(P′). Some combinatorial consequences of these results are also discussed.  相似文献   

10.
Let G be a finitely generated accessible group. We will study the homology of G with coefficients in the left G-module H1(G;Z[G]). This G-module may be identified with the G-module of continuous functions with values in Z on the G-space of ends of G, quotiented by the constant functions. The main result is as follows: Suppose G is infinite, then the abelian group H1(G;H1(G;Z[G])) has rank 1 if G has a free subgroup of finite index and it has rank 0 if G has not.  相似文献   

11.
The concept of a k-sequential graph is presented as follows. A graph G with ∣V(G)∪ E(G)∣=t is called k-sequential if there is a bijection?: V(G)∪E(G) → {k,k+1,…,t+k?1} such that for each edgee?=xyin E(G) one has?(e?) = ∣?(x)??(y)∣. A graph that is 1-sequential is called simply sequential, and, in particular the author has conjectured that all trees are simply sequential. In this paper an introductory study of k-sequential graphs is made. Further, several variations on the problems of gracefully or sequentially numbering the elements of a graph are discussed.  相似文献   

12.
Let G be a noncompact semisimple Lie group with finite center and H an open subgroup of the fixed point group of an involution of G. GH becomes a pseudo-Riemannian manifold. We prove that the Laplacian P on GH is globally solvable in the sense that PC(GH) = C(GH). This generalizes the global solvability of the Casimir operators on non-compact semisimple Lie groups with finite center due to J. Rauch and D. Wigner.  相似文献   

13.
Let G(itk, p) denote the class of k-partite graphs, where each part is a stable set of cardinality p and where the edges between any pair of stable sets are those of a perfect matching. Maru?i? has conjectured that if G belongs to G(k, p) and is connected then G is hamiltonian. It is proved that the conjecture is true for k ≤ 3 or p ≤ 3; but for k ≥ 4 and p ≥ 4 a non-hamiltonian connected graph in G(k, p) is constructed.  相似文献   

14.
All pairs (G,H) of graphs G,H satisfying L(G) = T(H) are determined. The “graph equation“ L(G)= T(H) is also solved.  相似文献   

15.
Let G be a connected semisimple Lie group with finite center and K a maximal compact subgroup. Denote (i) Harish-Chandra's Schwartz spaces by Cp(G)(0<p?2), (ii) the K-biinvariant elements in Cp(G) by Ip(G), (iii) the positive definite (zonal) spherical functions by P, and (iv) the spherical transform on Cp(G) by ? → \?gj. For T a positive definite distribution on G it is established that (i) T extends uniquely onto Cl(G), (ii) there exists a unique measure μ of polynomial growth on P such that T[ψ]=∫pψdμ for all ψ?I1(G) (iii) all measures μ of polynomial growth on P are obtained in this way, and (iv) T may be extended to a particular Ip(G) space (1 ? p ? 2) if and only if the support of μ lies in a certain easily defined subset of P. These results generalize a well-known theorem of Godement, and the proofs rely heavily on the recent harmonic analysis results of Trombi and Varadarajan.  相似文献   

16.
It is proved that if G is a split extension of a cyclic p-group by a cyclic p′-group with faithful action then any torsion unit of augmentation one of ZG is rationally conjugate to a group element. It is also proved that if G is a split extension of an abelian group A by an abelian group X with (|A|, |X|) = 1 then any torsion unit of ZG of augmentation one and order relatively prime to |A| is rationally conjugate to an element of X.  相似文献   

17.
We consider two Gaussian measures P1 and P2 on (C(G), B) with zero expectations and covariance functions R1(x, y) and R2(x, y) respectively, where Rν(x, y) is the Green's function of the Dirichlet problem for some uniformly strongly elliptic differential operator A(ν) of order 2m, m ≥ [d2] + 1, on a bounded domain G in Rd (ν = 1, 2). It is shown that if the order of A(2) ? A(1) is at most 2m ? [d2] ? 1, then P1 and P2 are equivalent, while if the order is greater than 2m ? [d2] ? 1, then P1 and P2 are not always equivalent.  相似文献   

18.
Let A be a von Neumann algebra, let σ be a strongly continuous representation of the locally compact abelian group G as 1-automorphisms of A. Let M(σ) be the Banach algebra of bounded linear operators on A generated by ∝ σt(t) (μ?M(G)). Then it is shown that M(σ) is semisimple whenever either (i) A has a σ-invariant faithful, normal, semifinite, weight (ii) σ is an inner representation or (iii) G is discrete and each σt is inner. It is shown that the Banach algebra L(σ) generated by ∝ ?(t)σt dt (? ? L1(G)) is semisimple if a is an integrable representation. Furthermore, if σ is an inner representation with compact spectrum, it is shown that L(σ) is embedded in a commutative, semisimple, regular Banach algebra with isometric involution that is generated by projections. This algebra is contained in the ultraweakly continuous linear operators on A. Also the spectral subspaces of σ are given in terms of projections.  相似文献   

19.
Let G denote the complement of a graph G, and x(G), β1(G), β4(G), α0(G), α1(G) denote respectively the chromatic number, line-independence number, point-independence number, point-covering number, line-covering number of G, Nordhaus and Gaddum showed that for any graph G of order p, {2√p} ? x(G) + x(G) ? p + 1 and p ? x(G)·x(G) ? [(12(p + 1))2]. Recently Chartrand and Schuster have given the corresponding inequalities for the independence numbers of any graph G. However, combining their result with Gallai's well known formula β1(G) + α1(G) = ?, one is not deduce the analogous bounds for the line-covering numbers of G andG, since Gallai's formula holds only if G contains no isolated vertex. The purpose of this note is to improve the results of Chartland and Schuster for line-independence numbers for graphs where both G andG contain no isolated vertices and thereby allowing us to use Gallai's formula to get the corresponding bounds for the line-covering numbers of G.  相似文献   

20.
Let A be an indecomposable principally polarized abelian variety of dimension g. Third order theta functions embed A in a projective space P(V3) of dimension 3g?1, while second order theta functions embed the Kummer variety X=A/{±1} in a projective space P(V2) of dimension 2g?1. Coble observed that for g=2 there is a unique cubic hypersurface in P(V3) that is singular along A, and for g=3 a unique quartic hypersurface in P(V2) singular along X. We explain these facts by a simple analysis of the representations of the corresponding Heisenberg group. To cite this article: A. Beauville, C. R. Acad. Sci. Paris, Ser. I 337 (2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号