首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. A path partition of a graph G is a collection P of paths in G such that every edge of G is in exactly one path in P. The minimum cardinality of a path partition of G is called thepath partition number of G and is denoted by π. In this paper we determine ηa and π for several classes of graphs and obtain a characterization of all graphs with Δ 4 and ηa = Δ − 1. We also obtain a characterization of all graphs for which ηa = π.  相似文献   

2.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. In this paper we characterize the class of graphs G for which ηa=Δ−1 where Δ is the maximum degree of a vertex in G.  相似文献   

3.
An acyclic graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by ηa. A path partition of a graph G is a collection P of paths in G such that every edge of G is in exactly one path in P. The minimum cardinality of a path partition of G is called the path partition number of G and is denoted by π. In this paper we determine ηa and π for several classes of graphs and obtain a characterization of all graphs with Δ 4 and ηa = Δ − 1. We also obtain a characterization of all graphs for which ηa = π.  相似文献   

4.
A path cover of a graph G=(V,E) is a set of pairwise vertex-disjoint paths such that the disjoint union of the vertices of these paths equals the vertex set V of G. The path cover problem is, given a graph, to find a path cover having the minimum number of paths. The path cover problem contains the Hamiltonian path problem as a special case since finding a path cover, consisting of a single path, corresponds directly to the Hamiltonian path problem. A graph is a distance-hereditary graph if each pair of vertices is equidistant in every connected induced subgraph containing them. The complexity of the path cover problem on distance-hereditary graphs has remained unknown. In this paper, we propose the first polynomial-time algorithm, which runs in O(|V|9) time, to solve the path cover problem on distance-hereditary graphs.  相似文献   

5.
The cube G3 of a connected graph G is that graph having the same vertex set as G and in which two distinct vertices are adjacent if and only if their distance in G is at most three. A Hamiltonian-connected graph has the property that every two distinct vertices are joined by a Hamiltonian path. A graph G is 1-Hamiltonian-connected if, for every vertex w of G, the graphs G and G?w are Hamiltonian-connected. A characterization of graphs whose cubes are 1-Hamiltonian-connected is presented.  相似文献   

6.
Let (G, w) denote a simple graph G with a weight function w : E(G) ← {0, 1, 2}. A path cover of (G, w) is a collection of paths in G such that every edge e is contained in exactly w(e) paths of the collection. For a vertex v, w(v) is the sum of the weights of the edges incident with v; v is called an odd (even) vertex if w(v) is odd (even). We prove that if every vertex of (G, w) is incident with at most one edge of weight 2, then (G, w) has a path cover P such that each odd vertex occurs exactly once, and each even vertex exactly twice, as an end of a path of P. We also prove that if every vertex of (G, w) is even, then (G, w) has a path cover P such that each vertex occurs exactly twice as an end of a path of P. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
We have proved that every 3-connected planar graph G either contains a path on k vertices each of which has degree at most 5k or does not contain any path on k vertices; the bound 5k is the best possible. Moreover, for every connected planar graph H other than a path and for every integer m ≥ 3 there is a 3-connected planar graph G such that each copy of H in G contains a vertex of degree at least m.  相似文献   

8.
An H1,{H2}-factor of a graph G is a spanning subgraph of G with exactly one component isomorphic to the graph H1 and all other components (if there are any) isomorphic to the graph H2. We completely characterise the class of connected almost claw-free graphs that have a P7,{P2}-factor, where P7 and P2 denote the paths on seven and two vertices, respectively. We apply this result to parallel knock-out schemes for almost claw-free graphs. These schemes proceed in rounds in each of which each surviving vertex eliminates one of its surviving neighbours. A graph is reducible if such a scheme eliminates every vertex in the graph. Using our characterisation, we are able to classify all reducible almost claw-free graphs, and we can show that every reducible almost claw-free graph is reducible in at most two rounds. This leads to a quadratic time algorithm for determining if an almost claw-free graph is reducible (which is a generalisation and improvement upon the previous strongest result that showed that there was a O(n5.376) time algorithm for claw-free graphs on n vertices).  相似文献   

9.
We define a partial ordering on the set of σ-polynomials as well as a vertex splitting operation on the set of graphs, and introduce the notions of σ-equivalence and σ-uniqueness of graphs. Let σ(G) be the σ-polynomial of a graph G and (OVERBAR)σ(G) = σ(Gc). Let H = (G, v, A, B) be a vertex splitting graph of G. We prove that (OVERBAR)σ(G) ≤ (OVERBAR)σ(H) and the equality holds if and only if every vertex of A is adjacent to every vertex of B. This gives us an effective means to find σ-equivalent and χ-equivalent graphs. A necessary and sufficient condition for a graph to be χ-unique but not σ-unique is also obtained. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Let G be a graph, and λ the smallest integer for which G has a nowherezero λ-flow, i.e., an integer λ for which G admits a nowhere-zero λ-flow, but it does not admit a (λ ? 1)-flow. We denote the minimum flow number of G by Λ(G). In this paper we show that if G and H are two arbitrary graphs and G has no isolated vertex, then Λ(GH) ? 3 except two cases: (i) One of the graphs G and H is K 2 and the other is 1-regular. (ii) H = K 1 and G is a graph with at least one isolated vertex or a component whose every block is an odd cycle. Among other results, we prove that for every two graphs G and H with at least 4 vertices, Λ(GH) ? 3.  相似文献   

11.
A vertex coloring of a graph G is an assignment of colors to the vertices of G so that every two adjacent vertices of G have different colors. A coloring related property of a graphs is also an assignment of colors or labels to the vertices of a graph, in which the process of labeling is done according to an extra condition. A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those structures of a graph that satisfy some domination property together with other conditions on the vertices of G. In this article we study several mathematical properties related to coloring, domination and location of corona graphs. We investigate the distance-k colorings of corona graphs. Particularly, we obtain tight bounds for the distance-2 chromatic number and distance-3 chromatic number of corona graphs, through some relationships between the distance-k chromatic number of corona graphs and the distance-k chromatic number of its factors. Moreover, we give the exact value of the distance-k chromatic number of the corona of a path and an arbitrary graph. On the other hand, we obtain bounds for the Roman dominating number and the locating–domination number of corona graphs. We give closed formulaes for the k-domination number, the distance-k domination number, the independence domination number, the domatic number and the idomatic number of corona graphs.  相似文献   

12.
对于子集$S\subseteq V(G)$,如果图$G$里的每一条$k$路都至少包含$S$中的一个点,那么我们称集合$S$是图$G$的一个$k$-路点覆盖.很明显,这个子集并不唯一.我们称最小的$k$-路点覆盖的基数为$k$-路点覆盖数, 记作$\psi_k(G)$.本文给出了一些笛卡尔乘积图上$\psi_k(G)$值的上界或下界.  相似文献   

13.
A path cover of a graph G=(V,E) is a family of vertex-disjoint paths that covers all vertices in V. Given a graph G, the path cover problem is to find a path cover of minimum cardinality. This paper presents a simple O(n)-time approximation algorithm for the path cover problem on circular-arc graphs given a set of n arcs with endpoints sorted. The cardinality of the path cover found by the approximation algorithm is at most one more than the optimal one. By using the result, we reduce the path cover problem on circular-arc graphs to the Hamiltonian cycle and Hamiltonian path problems on the same class of graphs in O(n) time. Hence the complexity of the path cover problem on circular-arc graphs is the same as those of the Hamiltonian cycle and Hamiltonian path problems on circular-arc graphs.  相似文献   

14.
A graph G homogeneously embeds in a graph H if for every vertex x of G and every vertex y of H there is an induced copy of G in H with x at y. The graph G uniformly embeds in H if for every vertex y of H there is an induced copy of G in H containing y. For positive integer k, let fk(G) (respectively, gk(G)) be the minimum order of a graph H whose edges can be k-coloured such that for each colour, G homogeneously embeds (respectively, uniformly embeds) in the graph given by V(H) and the edges of that colour. We investigate the values f2(G) and g2(G) for special classes of G, in particular when G is a star or balanced complete bipartite graph. Then we investigate fk(G) and gk(G) when k ≥ 3 and G is a complete graph.  相似文献   

15.
We show that a graph G has no houses and no holes if and only if for every connected induced subgraph H of G and every vertex in H, either the vertex is adjacent to all the other vertices in H, or it forms a 2-pair of H with some other vertex in H. As a consequence, there is a simple linear time algorithm to find a 2-pair in HH-free graphs. We also note that the class of Meyniel graphs admits an analogous characterization.  相似文献   

16.
We present results on partitioning the vertices of 2-edge-colored graphs into monochromatic paths and cycles. We prove asymptotically the two-color case of a conjecture of Sárközy: the vertex set of every 2-edge-colored graph can be partitioned into at most 2α(G) monochromatic cycles, where α(G) denotes the independence number of G. Another direction, emerged recently from a conjecture of Schelp, is to consider colorings of graphs with given minimum degree. We prove that apart from o(|V (G)|) vertices, the vertex set of any 2-edge-colored graph G with minimum degree at least \(\tfrac{{(1 + \varepsilon )3|V(G)|}} {4}\) can be covered by the vertices of two vertex disjoint monochromatic cycles of distinct colors. Finally, under the assumption that \(\bar G\) does not contain a fixed bipartite graph H, we show that in every 2-edge-coloring of G, |V (G)| ? c(H) vertices can be covered by two vertex disjoint paths of different colors, where c(H) is a constant depending only on H. In particular, we prove that c(C 4)=1, which is best possible.  相似文献   

17.
For any graph H, let Forb*(H) be the class of graphs with no induced subdivision of H. It was conjectured in [J Graph Theory, 24 (1997), 297–311] that, for every graph H, there is a function fH: ?→? such that for every graph G∈Forb*(H), χ(G)≤fH(ω(G)). We prove this conjecture for several graphs H, namely the paw (a triangle with a pendant edge), the bull (a triangle with two vertex‐disjoint pendant edges), and what we call a “necklace,” that is, a graph obtained from a path by choosing a matching such that no edge of the matching is incident with an endpoint of the path, and for each edge of the matching, adding a vertex adjacent to the ends of this edge. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:49–68, 2012  相似文献   

18.
A simple graph H is a cover of a graph G if there exists a mapping φ from H onto G such that φ maps the neighbors of every vertex υ in H bijectively to the neighbors of φ (υ) in G . Negami conjectured in 1986 that a connected graph has a finite planar cover if and only if it embeds in the projective plane. The conjecture is still open. It follows from the results of Archdeacon, Fellows, Negami, and the first author that the conjecture holds as long as the graph K 1,2,2,2 has no finite planar cover. However, those results seem to say little about counterexamples if the conjecture was not true. We show that there are, up to obvious constructions, at most 16 possible counterexamples to Negami's conjecture. Moreover, we exhibit a finite list of sets of graphs such that the set of excluded minors for the property of having finite planar cover is one of the sets in our list. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 183–206, 2004  相似文献   

19.
A vertex distinguishing edge coloring of a graph G is a proper edge coloring of G such that any pair of vertices has the distinct sets of colors. The minimum number of colors required for a vertex distinguishing edge coloring of a graph G is denoted by ???? s (G). In this paper, we obtained upper bounds on the vertex distinguishing chromatic index of 3-regular Halin graphs and Halin graphs with ??(G) ?? 4, respectively.  相似文献   

20.
The graph G is a covering of the graph H if there exists a (projection) map p from the vertex set of G to the vertex set of H which induces a one-to-one correspondence between the vertices adjacent to v in G and the vertices adjacent to p(v) in H, for every vertex v of G. We show that for any two finite regular graphs G and H of the same degree, there exists a finite graph K that is simultaneously a covering both of G and H. The proof uses only Hall's theorem on 1-factors in regular bipartite graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号