首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We present a barycentric representation of cardinal interpolants, as well as a weighted barycentric formula for their efficient evaluation. We also propose a rational cardinal function which in some cases agrees with the corresponding cardinal interpolant and, in other cases, is even more accurate.In numerical examples, we compare the relative accuracy of those various interpolants with one another and with a rational interpolant proposed in former work.Dedicated to the memory of Peter HenriciThis work was done at the University of California at San Diego, La Jolla  相似文献   

2.
Fractal Interpolation functions provide natural deterministic approximation of complex phenomena. Cardinal cubic splines are developed through moments (i.e. second derivative of the original function at mesh points). Using tensor product, bicubic spline fractal interpolants are constructed that successfully generalize classical natural bicubic splines. An upper bound of the difference between the natural cubic spline blended fractal interpolant and the original function is deduced. In addition, the convergence of natural bicubic fractal interpolation functions towards the original function providing the data is studied.  相似文献   

3.
Mean value interpolation is a simple, fast, linearly precise method of smoothly interpolating a function given on the boundary of a domain. For planar domains, several properties of the interpolant were established in a recent paper by Dyken and the second author, including: sufficient conditions on the boundary to guarantee interpolation for continuous data; a formula for the normal derivative at the boundary; and the construction of a Hermite interpolant when normal derivative data is also available. In this paper we generalize these results to domains in arbitrary dimension.  相似文献   

4.
In this note interpolation by real polynomials of several real variables is treated. Existence and unicity of the interpolant for knot systems being the perspective images of certain regular knot systems is discussed. Moreover, for such systems a Newton interpolation formula is derived allowing a recursive computation of the interpolant via multivariate divided differences. A numerical example is given.Partially supported by CICYT Res. Grant PS 87/0060 and by a Europe Travel Grant CAI-CONAI, Spain, 1988.  相似文献   

5.
Among the representations of rational interpolants, the barycentric form has several advantages, for example, with respect to stability of interpolation, location of unattainable points and poles, and differentiation. But it also has some drawbacks, in particular the more costly evaluation than the canonical representation. In the present work we address this difficulty by diminishing the number of interpolation nodes embedded in the barycentric form. This leads to a structured matrix, made of two (modified) Vandermonde and one Löwner, whose kernel is the set of weights of the interpolant (if the latter exists). We accordingly modify the algorithm presented in former work for computing the barycentric weights and discuss its efficiency with several examples.  相似文献   

6.
In this paper, we describe a recursive method for computing interpolants defined in a space spanned by a finite number of continuous functions in RdRd. We apply this method to construct several interpolants such as spline interpolants, tensor product interpolants and multivariate polynomial interpolants. We also give a simple algorithm for solving a multivariate polynomial interpolation problem and constructing the minimal interpolation space for a given finite set of interpolation points.  相似文献   

7.
A new C interpolant is presented for the univariate Hermite interpolation problem. It differs from the classical solution in that the interpolant is of non‐polynomial nature. Its basis functions are a set of simple, compact support, transcendental functions. The interpolant can be regarded as a truncated Multipoint Taylor series. It has essential singularities at the sample points, but is well behaved over the real axis and satisfies the given functional data. The interpolant converges to the underlying real‐analytic function when (i) the number of derivatives at each point tends to infinity and the number of sample points remains finite, and when (ii) the spacing between sample points tends to zero and the number of specified derivatives at each sample point remains finite. A comparison is made between the numerical results achieved with the new method and those obtained with polynomial Hermite interpolation. In contrast with the classical polynomial solution, the new interpolant does not suffer from any ill conditioning, so it is always numerically stable. In addition, it is a much more computationally efficient method than the polynomial approach. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
In this paper we consider constructing some higher-order modifications of Newton’s method for solving nonlinear equations which increase the order of convergence of existing iterative methods by one or two or three units. This construction can be applied to any iteration formula, and per iteration the resulting methods add only one additional function evaluation to increase the order. Some illustrative examples are provided and several numerical results are given to show the performance of the presented methods.  相似文献   

9.
The problem of constructing a univariate rational interpolant or Padé approximant for given data can be solved in various equivalent ways: one can compute the explicit solution of the system of interpolation or approximation conditions, or one can start a recursive algorithm, or one can obtain the rational function as the convergent of an interpolating or corresponding continued fraction.In case of multivariate functions general order systems of interpolation conditions for a multivariate rational interpolant and general order systems of approximation conditions for a multivariate Padé approximant were respectively solved in [6] and [9]. Equivalent recursive computation schemes were given in [3] for the rational interpolation case and in [5] for the Padé approximation case. At that moment we stated that the next step was to write the general order rational interpolants and Padé approximants as the convergent of a multivariate continued fraction so that the univariate equivalence of the three main defining techniques was also established for the multivariate case: algebraic relations, recurrence relations, continued fractions. In this paper a multivariate qd-like algorithm is developed that serves this purpose.  相似文献   

10.
Given scattered data on the real line, Favard [4] constructed an interpolant which depends linearly and locally on the data and whose nth derivative is locally bounded by the nth divided differences of the data times a constant depending only on n. It is shown that the (n —1)th derivative of Favard’s interpolant can be likewise bounded by divided differences, and that one can bound at best two consecutive derivatives of any interpolant by the corresponding divided differences. In this sense, Favard’s univariate interpolant is the best possible. Favard’s result has been extended [8] to a special case in several variables, and here the extent to which this can be repeated in a more general setting is proven exactly.  相似文献   

11.
How can small-scale parallelism best be exploited in the solution of nonstiff initial value problems? It is generally accepted that only modest gains inefficiency are possible, and it is often the case that “fast” parallel algorithms have quite crude error control and stepsize selection components. In this paper we consider the possibility of using parallelism to improvereliability andfunctionality rather than efficiency. We present an algorithm that can be used with any explicit Runge-Kutta formula. The basic idea is to take several smaller substeps in parallel with the main step. The substeps provide an interpolation facility that is essentially free, and the error control strategy can then be based on a defect (residual) sample. If the number of processors exceeds (p ? 1)/2, wherep is the order of the Runge-Kutta formula, then the interpolant and the error control scheme satisfy very strong reliability conditions. Further, for a given orderp, the asymptotically optimal values for the substep lengths are independent of the problem and formula and hence can be computed a priori. Theoretical comparisons between the parallel algorithm and optimal sequential algorithms at various orders are given. We also report on numerical tests of the reliability and efficiency of the new algorithm, and give some parallel timing statistics from a 4-processor machine.  相似文献   

12.
We improve upon the method of Zhu and Zhu [A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341–348] for finding the denominator values of rational interpolants, reducing considerably the number of arithmetical operations required for their computation. In a second stage, we determine the points (if existent) which can be discarded from the rational interpolation problem. Furthermore, when the interpolant has a linear denominator, we obtain a formula for the barycentric weights which is simpler than the one found by Berrut and Mittelmann [Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355–370]. Subsequently, we give a necessary and sufficient condition for the rational interpolant to have a pole.  相似文献   

13.
We describe a novel method for minimisation of univariate functions which exhibits an essentially quadratic convergence and whose convergence interval is only limited by the existence of near maxima. Minimisation is achieved through a fixed-point iterative algorithm, involving only the first and second-order derivatives, that eliminates the effects of near inflexion points on convergence, as usually observed in other minimisation methods based on the quadratic approximation. Comparative numerical studies against the standard quadratic and Brent's methods demonstrate clearly the high robustness, high precision and convergence rate of the new method, even when a finite difference approximation is used in the evaluation of the second-order derivative.  相似文献   

14.
In this paper, we present a simple, and yet powerful and easily applicable scheme in constructing the Newton-like iteration formulae for the computation of the solutions of nonlinear equations. The new scheme is based on the homotopy analysis method applied to equations in general form equivalent to the nonlinear equations. It provides a tool to develop new Newton-like iteration methods or to improve the existing iteration methods which contains the well-known Newton iteration formula in logic; those all improve the Newton method. The orders of convergence and corresponding error equations of the obtained iteration formulae are derived analytically or with the help of Maple. Some numerical tests are given to support the theory developed in this paper.  相似文献   

15.
Summary The Gregory rule is a well-known example in numerical quadrature of a trapezoidal rule with endpoint corrections of a given order. In the literature, the methods of constructing the Gregory rule have, in contrast to Newton-Cotes quadrature,not been based on the integration of an interpolant. In this paper, after first characterizing an even-order Gregory interpolant by means of a generalized Lagrange interpolation operator, we proceed to explicitly construct such an interpolant by employing results from nodal spline interpolation, as established in recent work by the author and C.H. Rohwer. Nonoptimal order error estimates for the Gregory rule of even order are then easily obtained.  相似文献   

16.
Recent results reveal that the family of barycentric rational interpolants introduced by Floater and Hormann is very well-suited for the approximation of functions as well as their derivatives, integrals and primitives. Especially in the case of equidistant interpolation nodes, these infinitely smooth interpolants offer a much better choice than their polynomial analogue. A natural and important question concerns the condition of this rational approximation method. In this paper we extend a recent study of the Lebesgue function and constant associated with Berrut’s rational interpolant at equidistant nodes to the family of Floater–Hormann interpolants, which includes the former as a special case.  相似文献   

17.
18.
1. IntroductionThe smooth interpolation on a triangulation of a planar region is of great importancein most applied areas) such as computation of finite element method, computer aided(geometric) design and scattered data processing.Let A be a triangulation of a polygonal domain fi C RZ and Ac, al and aZ the setso f venices, edges and triangles in a respectively. Usually the triangulation in practiceis formed by a mass of scattered nodes that, covered by the region fi, are carryingsimilar typ…  相似文献   

19.
In the table of multivariate rational interpolants the entries are arranged such that the row index indicates the number of numerator coefficients and the column index the number of denominator coefficients. If the homogeneous system of linear equations defining the denominator coefficients has maximal rank, then the rational interpolant can be represented as a quotient of determinants. If this system has a rank deficiency, then we identify the rational interpolant with another element from the table using less interpolation conditions for its computation and we describe the effect this dependence of interpolation conditions has on the structure of the table of multivariate rational interpolants. In the univariate case the table of solutions to the rational interpolation problem is composed of triangles of so-called minimal solutions, having minimal degree in numerator and denominator and using a minimal number of interpolation conditions to determine the solution.Communicated by Dietrich Braess.  相似文献   

20.
In this paper, we consider multivariate interpolation with radial basis functions of finite smoothness. In particular, we show that interpolants by radial basis functions in ℝ d with finite smoothness of even order converge to a polyharmonic spline interpolant as the scale parameter of the radial basis functions goes to zero, i.e., the radial basis functions become increasingly flat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号