首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
An electrophoretically mediated microanalysis (EMMA) method for screening neuraminidase inhibitors in depolymerized glycosaminoglycan and natural extracts is described. In the present method, enzyme and substrate were individually introduced into the capillary as distinct plugs, and then mixed for a short time. Afterwards the voltage was reapplied to separate the product from the unreacted substrate and the natural extract. The measured peak area of the product at 214 nm represents the enzyme activity. The electrophoretic conditions for the enzyme reaction and separation of substrate and product were optimized in this study. Under the optimal conditions, the Michaelis–Menten constant and the inhibitive mechanism of zanamivir were studied, which agreed with the literature data. Furthermore, the inhibitory ratios of enzymatic activity of depolymerized glycosaminoglycan and traditional Chinese drugs were determined. The EMMA method has superiority over traditional assay methods, in not only minimizing the false-positive results but also in simplifying the experimental procedure. Therefore, it could be employed to screen inhibitors from natural sources.  相似文献   

2.
A technique for separating and detecting enzyme inhibitors was developed using CE with an enzyme microreactor. The on‐column enzyme microreactor was constructed using NdFeB magnet(s) to immobilize alkaline phosphatase‐coated superparamagnetic beads (2.8 μm diameter) inside a capillary before the detection window. Enzyme inhibition assays were performed by injecting a plug of inhibitor into a capillary filled with the substrate, AttoPhos. Product generated in the enzyme microreactor was detected by LIF. Inhibitor zones electrophoresed through the capillary, passed through the enzyme microreactor, and were observed as negative peaks due to decreased product formation. The goal of this study was to improve peak capacities for inhibitor separations relative to previous studies, which combined continuous engagement electrophoretically mediated microanalysis and transient engagement electrophoretically mediated microanalysis to study enzyme inhibition. The effects of electric field strength, bead injection time and inhibitor concentrations on peak capacity and peak width were investigated. Peak capacities were increased to ≥20 under optimal conditions of electric field strength and bead injection time for inhibition assays with arsenate and theophylline. Five reversible inhibitors of alkaline phosphatase (theophylline, vanadate, arsenate, L ‐tryptophan and tungstate) were separated and detected to demonstrate the ability of this technique to analyze complex inhibitor mixtures.  相似文献   

3.
High-throughput screening (HTS) is often required in enzyme inhibitor drugs screening. Mass spectrometry (MS) provides a powerful method for high-throughput screening enzyme inhibitors because its high speed, sensitivity and property of lable free. However, most of the MS methods need complicated sampling interface system. Overall throughput was limited by sample loading in these cases. In this study, we develop a simple interface which coupled droplet segmented system to a venturi easy ambient sonic-spray ionization mass spectrometer. It is fabricated by using a single capillary to act as both sampling probe and the emitter, which simplifies the construction, reduces the cost and shorten the sampling time. Samples sucked by venturi effect are segmented to nanoliter plugs by air, then the plugs can be detected by MS directly. This system eliminated the need for flow injection which was popular used in classic scheme. The new system is applied to screen angiotensin converting enzyme inhibitors. High-throughput was achieved in analyzing 96 samples at 1.6 s per sample. The plugs formation was at 0.5s per sample. Carry-over between samples was less than 5%, the peak height RSD was 2.92% (n = 15). Dose-response curves of 3 known inhibitors were also measured to validate its potential in drug discovery. The calculated IC50 agreed well with reported values.  相似文献   

4.
An effective, rapid and economical CE/LIF (capillary electrophoresis/laser-induced fluorescence) method was developed and applied to the characterization of signal peptidase (SPase) enzyme, which is a target for the screening of new drug candidates. In this method, CE separates the product from the substrate and LIF selectively detects the fluorescence-labeled product and substrate. By measuring the increase of the product as a function of time, one can monitor the progression of the enzyme reaction. The progression curves were also used for screening inhibitors for this enzyme. The effects of various reaction conditions were also studied and discussed. In addition, this CE/LIF method was applied to the determination of the enzyme activity, the quality control of the substrate and/or enzymes, and the cross-reactivity of inhibitors to the enzyme. It can be concluded that this method is suitable for high throughput screening (HTS) assays because it can deliver fast, sensitive, quantitative, and reliable results.  相似文献   

5.
Tang Z  Wang T  Kang J 《Electrophoresis》2007,28(17):2981-2987
A method for creating an immobilized capillary acetylcholinesterase (AChE) reactor based on a layer-by-layer (LBL) assembly for inhibitor screening is described. The unique capillary AChE reactor was easily prepared by the instrument in three steps: first, a 0.5 cm long plug of a solution of the cationic polyelectrolyte polydiallyldimethylammonium (PDDA) was injected into the capillary to produce a positively charged coating on the surface of the capillary; subsequently, the enzyme solution with the same plug length was injected into the capillary and incubated for 10 min to immobilize the enzyme on the capillary wall via electrostatic interaction; third, PDDA solution with the same plug length was injected again into the capillary to cover the immobilized enzyme by forming PDDA-AChE-PDDA sandwich-like structure. The enzyme reactor can be easily renewed after removing the immobilized enzyme by flushing the column with 1 M NaCl solution. Activity of the immobilized enzyme can be assayed simply by carrying out an electrophoretic separation, i.e., the substrate solution was injected and incubated for a short time, followed by applying a voltage to separate the product from the unreacted substrate. The measured peak area of the product then represented the enzyme activity. For enzyme inhibitor screening, the mixture solution of the substrate and the inhibitor was injected and assayed the reduction of the enzyme activity. The immobilized enzyme could withstand 100 consecutive assays by only losing 10% activity. The reproducibility in terms of time-to-time, day-to-day, and batch-to-batch was measured with RSD% less than 4.7%. Furthermore, the screening system was validated by a known inhibitor. Finally, screening a small compound library containing four known AChE inhibitors and 42 natural extracts was demonstrated, and species with inhibition activity can be straightforwardly identified with the system.  相似文献   

6.
Microfluidic systems are capillary networks of varying complexity fabricated originally in silicon, but nowadays in glass and polymeric substrates. Flow of liquid is mainly controlled by use of electroosmotic effects, i.e. application of electric fields, in addition to pressurized flow, i.e. application of pressure or vacuum. Because electroosmotic flow rates depend on the charge densities on the walls of capillaries, they are influenced by substrate material, fabrication processes, surface pretreatment procedures, and buffer additives. Microfluidic systems combine the properties of capillary electrophoretic systems and flow-through analytical systems, and thus biochemical analytical assays have been developed utilizing and integrating both aspects. Proteins, peptides, and nucleic acids can be separated because of their different electrophoretic mobility; detection is achieved with fluorescence detectors. For protein analysis, in particular, interfaces between microfluidic chips and mass spectrometers were developed. Further levels of integration of required sample-treatment steps were achieved by integration of protein digestion by immobilized trypsin and amplification of nucleic acids by the polymerase chain reaction. Kinetic constants of enzyme reactions were determined by adjusting different degrees of dilution of enzyme substrates or inhibitors within a single chip utilizing mainly the properties of controlled dosing and mixing liquids within a chip. For analysis of kinase reactions, however, a combination of a reaction step (enzyme with substrate and inhibitor) and a separation step (enzyme substrate and reaction product) was required. Microfluidic chips also enable separation of analytes from sample matrix constituents, which can interfere with quantitative determination, if they have different electrophoretic mobilities. In addition to analysis of nucleic acids and enzymes, immunoassays are the third group of analytical assays performed in microfluidic chips. They utilize either affinity capillary electrophoresis as a homogeneous assay format, or immobilized antigens or antibodies in heterogeneous assays with serial supply of reagents and washing solutions.  相似文献   

7.
CE was used for the first time to study the two‐substrate enzyme glycerol kinase. The capillary was used as a nanoreactor in which the enzyme and its two substrates glycerol and adenosine‐5′‐triphosphate were in‐capillary mixed to realize the enzymatic assay. For kinetic parameters determination, reactants were injected (50 mbar × 5 s) as follows: (i) incubation buffer; (ii) adenosine‐5′‐triphosphate; (iii) enzyme, and (iv) glycerol. Enzymatic reaction was then initiated by mixing the reactants using electrophoretically mediated microanalysis (+20 kV for 6 s) followed by a zero‐potential amplification step of 3 min. Finally, electrophoretic separation was performed; the product adenosine‐5′‐diphosphate was detected at 254 nm and quantified. For enzyme inhibition, an allosteric inhibitor fructose‐1,6‐bisphosphate plug was injected before the first substrate plug and +20 kV for 8 s was applied for reactant mixing. A simple, economic, and robust CE method was developed for monitoring glycerol kinase activity and inhibition. Only a few tens of nanoliters of reactants were used. The results compared well with those reported in literature. This study indicates, for the first time, that at least four reactant plugs can be in‐capillary mixed using an electrophoretically mediated microanalysis approach.  相似文献   

8.
Tang ZM  Wang ZY  Kang JW 《Electrophoresis》2007,28(3):360-365
An electrophoretically mediated microanalysis (EMMA) method for screening acetylcholinesterase (AChE) inhibitors in natural extracts is described. In this method, solutions of AChE and the mixture of the substrate and the natural extract were successively injected into the capillary, and mixed electrophoretically by applying a voltage for a short time. Afterwards the voltage was reapplied to separate the product from the unreacted substrate and the natural extract. The measured peak area of the product at UV 230 nm represents the enzyme activity. Since the extract is mixed with the substrate, there is no need to separate the components before testing the inhibition. The inhibitory activity of the natural extract as a whole can be easily found if the peak area of the product is reduced. This makes the present method suitable for screening inhibitors in complex mixtures, such as natural extracts. Compared to the commonly used spectrometric method for screening of AChE inhibitors, the major advantage of the present method is the elimination of Ellman reagent, which is essential for the spectrometric method. This not only simplifies the experimental procedure but also minimizes false-positive results. Moreover, it is an obvious advantage of combining the separation power with the on-column enzyme assay for further investigating which compound(s) is/are responsible for the inhibition. The method was validated using a commercially available AChE inhibitor tacrine and a small chemical library containing four AChE inhibitors and 32 natural extracts. Inhibitors in natural extracts were identified with the present method.  相似文献   

9.
《Electrophoresis》2017,38(3-4):486-493
A new method for screening tyrosinase inhibitors from traditional Chinese medicines (TCMs) was successfully developed by capillary electrophoresis with reliable online immobilized enzyme microreactor (IMER). In addition, molecular docking study has been used for supporting inhibition interaction between enzyme and inhibitors. The IMER of tyrosinase was constructed at the outlet of the capillary by using glutaraldehyde as cross‐linker. The parameters including enzyme reaction, separation of the substrate and product, and the performance of immobilized tyrosinase were investigated systematically. Because of using short‐end injection procedure, the product and substrate were effectively separated within 2 min. The immobilized tyrosinase could remain 80% active for 30 days at 4°C. The Michaelis–Menten constant of tyrosinase was determined as 1.78 mM. Kojic acid, a known tyrosinase inhibitor, was used as a model compound for the validation of the inhibitors screening method. The half‐maximal inhibitory concentration of kojic acid was 5.55 μM. The method was successfully applied for screening tyrosinase inhibitors from 15 compounds of TCM. Four compounds including quercetin, kaempferol, bavachinin, and bakuchiol were found having inhibitory potentials. The results obtained in this work were supported by molecular docking study.  相似文献   

10.
Xiaowen Ji 《Talanta》2010,82(4):1170-231
A novel strategy for the preparation of in-column adenosine deaminase (ADA) microreactor and rapid screening of enzyme inhibitors in natural extracts was demonstrated. In this approach, ADA was encapsulated in anionic polyelectrolyte alginate that was immobilized on the surface of fused-silica capillary via ionic binding technique with cationic polyelectrolyte polyethylenimine (PEI). On-line enzyme inhibition study was performed by capillary electrophoresis (CE). The substrate and product were baselined separated within 75 s. The enzyme activity was determined by the quantification of peak area of the product. Enzyme inhibition can be read out directly from the reduced peak area of the product in comparison with a reference electropherogram obtained in the absence of any inhibitor. The inhibition percentage was used to evaluate relative activity of ADA microreactor. A known ADA inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) was employed as a model compound for the validation of the inhibitor screening method, and the screening of ADA inhibitor in 19 traditional Chinese herbal medicines was performed.  相似文献   

11.
Natural products are often large, synthetically intractable molecules, yet frequently offer surprising inroads into previously unexplored chemical space for enzyme inhibitors. Argifin is a cyclic pentapeptide that was originally isolated as a fungal natural product. It competitively inhibits family 18 chitinases by mimicking the chitooligosaccharide substrate of these enzymes. Interestingly, argifin is a nanomolar inhibitor of the bacterial-type subfamily of fungal chitinases that possess an extensive chitin-binding groove, but does not inhibit the much smaller, plant-type enzymes from the same family that are involved in fungal cell division and are thought to be potential drug targets. Here we show that a small, highly efficient, argifin-derived, nine-atom fragment is a micromolar inhibitor of the plant-type chitinase ChiA1 from the opportunistic pathogen Aspergillus fumigatus. Evaluation of the binding mode with the first crystal structure of an A. fumigatus plant-type chitinase reveals that the compound binds the catalytic machinery in the same manner as observed for argifin with the bacterial-type chitinases. The structure of the complex was used to guide synthesis of derivatives to explore a pocket near the catalytic machinery. This work provides synthetically tractable plant-type family 18 chitinase inhibitors from the repurposing of a natural product.  相似文献   

12.
Yang L  Chen C  Chen Y  Shi J  Liu S  Guo L  Xu H 《Analytica chimica acta》2010,683(1):136-142
A novel method for monitoring of enzyme reaction and inhibition with high temporal resolution was developed by using optically gated vacancy capillary electrophoresis (OGVCE) with laser-induced fluorescence (LIF) detection and immobilized enzyme. Trypsin cleavage reaction and inhibition were investigated by the presented OGVCE-LIF assay, using carboxyfluorescein (FAM) end-labeled Angiotensin as the substrate and commercially available immobilized trypsin. The substrate and the product were continuously loaded into the capillary by the electroosmotic flow while the immobilized enzyme remained in the sample vial. Substrate consumption and product formation were monitored simultaneously at 5 s interval during the whole reaction time. The enzymatic reaction rates obtained from the substrate and the product were highly consistent. The enzyme activity and the Michaelis constants of trypsin cleavage reaction, as well as the inhibition constant (for reversible competitive inhibitor) and the inhibition fraction (for irreversible inhibitor), were obtained. It was showed that the reported OGVCE-LIF method can perform fast, accurate, sensitive and reproducible CE enzyme assay with high temporal resolution, thus has great potential in application of the enzyme-substrate systems with fast reaction rate and the fluorescent substrate and products.  相似文献   

13.
The sirtuin enzymes are important regulatory deacylases in a variety of biochemical contexts and may therefore be potential therapeutic targets through either activation or inhibition by small molecules. Here, we describe the discovery of the most potent inhibitor of sirtuin 5 (SIRT5) reported to date. We provide rationalization of the mode of binding by solving co‐crystal structures of selected inhibitors in complex with both human and zebrafish SIRT5, which provide insight for future optimization of inhibitors with more “drug‐like” properties. Importantly, enzyme kinetic evaluation revealed a slow, tight‐binding mechanism of inhibition, which is unprecedented for SIRT5. This is important information when applying inhibitors to probe mechanisms in biology.  相似文献   

14.
The sirtuin enzymes are important regulatory deacylases in a variety of biochemical contexts and may therefore be potential therapeutic targets through either activation or inhibition by small molecules. Here, we describe the discovery of the most potent inhibitor of sirtuin 5 (SIRT5) reported to date. We provide rationalization of the mode of binding by solving co‐crystal structures of selected inhibitors in complex with both human and zebrafish SIRT5, which provide insight for future optimization of inhibitors with more “drug‐like” properties. Importantly, enzyme kinetic evaluation revealed a slow, tight‐binding mechanism of inhibition, which is unprecedented for SIRT5. This is important information when applying inhibitors to probe mechanisms in biology.  相似文献   

15.
In this study we developed a simple capillary electrophoresis (CE) method with an on-line acetylcholinesterase (AChE) microreactor at the inlet of capillary for inhibitor screening. The fused-silica capillary surface was modified with a polycationic polyethylenimine coating. Solutions of the enzyme and chitosan were then injected to immobilize the enzyme in approximately 2.9?cm of the capillary inlet (total length of capillary 60.2?cm) by electrostatic interaction and the film overlay technique. Separation of enzyme reaction product (thiocholine, ThCh) and unreacted substrate (acetylthiocholine, AThCh) was achieved within 3.0?min. The conditions affecting the efficiency of reaction of the enzyme were optimized by measuring the peak area of ThCh. Under the optimum conditions, using Huperzine-A as model inhibitor, K (i) and IC (50) were 0.551?μmol?L(-1) and 1.52?μmol?L(-1), respectively, for immobilized AChE. Finally, screening of a small compound library containing two known AChE inhibitors and 30 natural extracts was conducted, and species with inhibition activity were directly identified. Compared with previous publications on screening for AChE inhibitors in natural products based on CE methods, the method developed in this work has the advantages of lower cost per analysis, less leakage, and better bioaffinity for the immobilized enzyme because of the unique properties of sodium alginate and chitosan.  相似文献   

16.
Enzymes play an essential role in many aspects of pharmaceutical research as drug targets, drug metabolizers, enzyme drugs and more. In this specific field, enzyme assays are required to meet a number of specific requirements, such as low cost, easy automation, and high reliability. The integration of an immobilized‐enzyme reactor to capillary electrophoresis represents a unique approach to fulfilling these criteria by combining the benefits of enzyme immobilization, that is, increased stability and repeated use, as well as the minute sample consumption, short analysis time, and efficient analysis provided by capillary electrophoresis. In this review, we summarize, analyze, and discuss published works where pharmaceutically relevant enzymes were used to prepare capillary electrophoresis‐integrated immobilized‐enzyme reactors in an online manner. The presented assays are divided into three distinct groups based on the drug–enzyme relationship. The first, more extensively studied group employs enzymes that are considered to be therapeutic targets, the second group of assays present tools to assess drug metabolism and the third group assesses enzyme drugs. Furthermore, we examine various methods of enzyme immobilization and their implications for assay properties.  相似文献   

17.
An electrophoresis capillary that incorporates two enzymes for the simultaneous determination of glucose and L ‐glutamate is described. The enzymes deposited along the separation capillary walls react with their respective substrate as they are separated during the electrophoresis to produce hydrogen peroxide that is detected by amperometry as the hydrogen peroxide zone emerges from the end of the capillary. Even though both enzyme reactions produce a common product, hydrogen peroxide, the hydrogen peroxide produced by each enzyme reaction stays in narrow zones that migrate the length of the capillary at different rates. The rate of migration for the individual H2O2 zones is consistent with the expected mobility of neutral glucose and of anionic L ‐glutamate, respectively. This property allows each enzyme substrate to be characterized in a single experiment and in the presence of other electroactive substances.  相似文献   

18.
A capillary‐electrophoresis‐based method for the screening of tyrosinase inhibitors in traditional Chinese medicines was developed. The method integrated electrophoretically mediated microanalysis with sandwich mode injection, partial filling, and rapid polarity switching techniques, and carried out on‐column enzyme reaction and the separation of substrate and product. The conditions were optimized including the background electrolyte, mixing voltage, and the incubation time. Finally, the screening of nine standard natural compounds of traditional Chinese medicines was carried out. The inhibitors can be directly identified from the reduced peak area of the product compared to that obtained without any inhibitor. Chlorogenic acid (100 μM) showed inhibitory activity with the inhibitory percentage of 19.8%, while the other compounds showed no inhibitory activity. This method has great application potential in drug discovery from traditional Chinese medicines.  相似文献   

19.
An analytical method for studying enzyme inhibition has been developed using capillary electrophoresis with laser-induced fluorescence detection. This technique is based on electrophoretic mixing of zones of enzyme and inhibitor in substrate-filled capillaries. Enzyme catalytic activity is measured by detecting the fluorescent reaction product as it migrates past the detector. Reversible enzyme inhibition is indicated by a transient decrease in product formation. The enzyme, alkaline phosphatase, has been studied using the fluorogenic substrate AttoPhos ([2,2'-bibenzothiazol]-6-hydroxy-benzthiazole phosphate). This assay has been used to quantify theophylline, a noncompetitive, reversible inhibitor of alkaline phosphatase. The detection limit for theophylline is estimated at 3 microM, and 8.6 amole of alkaline phosphatase are required for each assay. The calculated K(i) for theophylline is 90 microM for the capillary electrophoretic enzyme-inhibitor assays.  相似文献   

20.
We describe a new method for fabricating a capillary-type sensor, called a combinable poly(dimethyl siloxane) (PDMS) capillary (CPC) sensor. The method for preparing the CPC simplifies enzyme inhibitor assays into a simple, single step assay. The sample inhibitor solution is introduced by capillary action. This triggers the spontaneous dissolution of physically adsorbed fluorescent substrates, and the substrate mixes with the inhibitor. This is followed by competitive reaction with insoluble enzyme to give a fluorescence response. CPC is composed of a convex-shaped PDMS stick containing reagents immobilized in an insoluble coating, and a concave-shaped PDMS stick containing reagents immobilized in a soluble coating. Since the concave-shaped PDMS has a deeper channel than the convex structure, combining these PDMS sticks is like closing the zipper of a "freezer bag". This allows easy fabrication of "thin and long" capillary structures containing different reagents inside the same capillary, without the need for precise alignment. This method allows the immobilization of two reactive reagents, such as enzyme and substrate required for a single step assay, which are typically very difficult to immobilize using commercially available conventional capillaries. Furthermore, by simply arraying various CPCs, the CPC sensor allows multiple assays. Here, we carried out a single-step enzyme inhibitor assay using the CPC. In addition, two independent CPCs were arrayed to demonstrate multiple assaying of a protease inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号