首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
For open discrete mappings f:D\{ b } ? \mathbbR3 f:D\backslash \left\{ b \right\} \to {\mathbb{R}^3} of a domain D ì \mathbbR3 D \subset {\mathbb{R}^3} satisfying relatively general geometric conditions in D \ {b} and having an essential singularity at a point b ? \mathbbR3 b \in {\mathbb{R}^3} , we prove the following statement: Let a point y 0 belong to [`(\mathbbR3)] \f( D\{ b } ) \overline {{\mathbb{R}^3}} \backslash f\left( {D\backslash \left\{ b \right\}} \right) and let the inner dilatation K I (x, f) and outer dilatation K O (x, f) of the mapping f at the point x satisfy certain conditions. Let B f denote the set of branch points of the mapping f. Then, for an arbitrary neighborhood V of the point y 0, the set Vf(B f ) cannot be contained in a set A such that g(A) = I, where I = { t ? \mathbbR:| t | < 1 } I = \left\{ {t \in \mathbb{R}:\left| t \right| < 1} \right\} and g:U ? \mathbbRn g:U \to {\mathbb{R}^n} is a quasiconformal mapping of a domain U ì \mathbbRn U \subset {\mathbb{R}^n} such that A ⊂ U.  相似文献   

2.
We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces ${L_{\omega}^{2}(\mathbb{R})}We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces Lw2(\mathbbR){L_{\omega}^{2}(\mathbb{R})} For operators M in the algebra generated by the convolutions with f ? Cc(\mathbb R){\phi \in {C_c(\mathbb {R})}} we show that [`(m(W))] = s(M){\overline{\mu(\Omega)} = \sigma(M)}, where the set Ω is determined by the spectrum of the shift S and μ is the symbol of M. For the general multipliers M we establish that [`(m(W))]{\overline{\mu(\Omega)}} is included in σ(M). A generalization of these results is given for the weighted spaces L2w(\mathbb Rk){L^2_{\omega}(\mathbb {R}^{k})} where the weight ω has a special form.  相似文献   

3.
In this paper, we prove a suitable Trudinger–Moser inequality with a singular weight in \mathbbRN{\mathbb{R}^N} and as an application of this result, using the mountain-pass theorem we establish sufficient conditions for the existence of nontrivial solutions to quasilinear elliptic partial differential equations of the form
-DN u+ V(x)|u|N-2u=\fracf(x,u)|x|a   in  \mathbbRN,    N 3 2,-\Delta_N\,u+ V(x)|u|^{N-2}u=\frac{f(x,u)}{|x|^a}\quad{\rm in} \, \mathbb{R}^N,\quad N\geq 2,  相似文献   

4.
Let Ω be an open bounded set in ℝN, N≥3, with connected Lipschitz boundary ∂Ω and let a(x,ξ) be an operator of Leray–Lions type (a(⋅,∇u) is of the same type as the operator |∇u|p−2u, 1<p<N). If τ is the trace operator on ∂Ω, [φ] the jump across ∂Ω of a function φ defined on both sides of ∂Ω, the normal derivative ∂/∂νa related to the operator a is defined in some sense as 〈a(⋅,∇u),ν〉, the inner product in ℝN, of the trace of a(⋅,∇u) on ∂Ω with the outward normal vector field ν on ∂Ω. If β and γ are two nondecreasing continuous real functions everywhere defined in ℝ, with β(0)=γ(0)=0, fL1(ℝN), gL1(∂Ω), we prove the existence and the uniqueness of an entropy solution u for the following problem,
in the sense that, if Tk(r)=max {−k,min (r,k)}, k>0, r∈ℝ, ∇u is the gradient by means of truncation (∇u=DTku on the set {|u|<k}) and , u measurable; DTk(u)∈Lp(ℝN), k>0}, then and u satisfies,
for every k>0 and every . Mathematics Subject Classifications (2000)  35J65, 35J70, 47J05.  相似文献   

5.
We prove variants of Korn’s inequality involving the deviatoric part of the symmetric gradient of fields u:\mathbbR2 é W? \mathbbR2 u:{\mathbb{R}^2} \supset \Omega \to {\mathbb{R}^2} belonging to Orlicz–Sobolev classes. These inequalities are derived with the help of gradient estimates for the Poisson equation in Orlicz spaces. We apply these Korn type inequalities to variational integrals of the form
òW h( | eD(u) | )dx \int\limits_\Omega {h\left( {\left| {{\varepsilon^D}(u)} \right|} \right)dx}  相似文献   

6.
We consider local minimizers u:\mathbbR2 é W? \mathbbRM u:{\mathbb{R}^2} \supset \Omega \to {\mathbb{R}^M} of the variational integral
òW H( ?u )dx \int\limits_\Omega {H\left( {\nabla u} \right)dx}  相似文献   

7.
Let Ω i and Ω o be two bounded open subsets of \mathbbRn{{\mathbb{R}}^{n}} containing 0. Let G i be a (nonlinear) map from ?Wi×\mathbbRn{\partial\Omega^{i}\times {\mathbb{R}}^{n}} to \mathbbRn{{\mathbb{R}}^{n}} . Let a o be a map from ∂Ω o to the set Mn(\mathbbR){M_{n}({\mathbb{R}})} of n × n matrices with real entries. Let g be a function from ∂Ω o to \mathbbRn{{\mathbb{R}}^{n}} . Let γ be a positive valued function defined on a right neighborhood of 0 in the real line. Let T be a map from ]1-(2/n),+¥[×Mn(\mathbbR){]1-(2/n),+\infty[\times M_{n}({\mathbb{R}})} to Mn(\mathbbR){M_{n}({\mathbb{R}})} . Then we consider the problem
$\left\{ {ll} {{\rm div}}\, (T(\omega,Du))=0 &\quad {{\rm in}} \;\Omega^{o} \setminus\epsilon{{\rm cl}} \Omega^{i},\\ -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}({x}/{\epsilon}, \gamma(\epsilon)\epsilon^{-1} ({\rm log} \, \epsilon)^{-\delta_{2,n}} u(x)) & \quad \forall x \in \epsilon\partial\Omega^{i},\\ T(\omega, Du(x)) \nu^{o}(x)=a^{o}(x)u(x)+g(x) & \quad \forall x \in \partial \Omega^{o}, \right.$\left\{ \begin{array}{ll} {{\rm div}}\, (T(\omega,Du))=0 &\quad {{\rm in}} \;\Omega^{o} \setminus\epsilon{{\rm cl}} \Omega^{i},\\ -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}({x}/{\epsilon}, \gamma(\epsilon)\epsilon^{-1} ({\rm log} \, \epsilon)^{-\delta_{2,n}} u(x)) & \quad \forall x \in \epsilon\partial\Omega^{i},\\ T(\omega, Du(x)) \nu^{o}(x)=a^{o}(x)u(x)+g(x) & \quad \forall x \in \partial \Omega^{o}, \end{array} \right.  相似文献   

8.
Let F:M ×\mathbbR ? M {\mathbf{F}}:M \times \mathbb{R} \to M be a continuous flow on a manifold M, let VM be an open subset, and let x:V ? \mathbbR \xi :V \to \mathbb{R} be a continuous function. We say that ξ is a period function if F(x, ξ(x)) = x for all xV. Recently, for any open connected subset VM; the author has described the structure of the set P(V) of all period functions on V. Assume that F is topologically conjugate to some C1 {\mathcal{C}^1} -flow. It is shown in this paper that, in this case, the period functions of F satisfy some additional conditions that, generally speaking, are not satisfied for general continuous flows.  相似文献   

9.
Let L=?Δ+|ξ|2 be the harmonic oscillator on $\mathbb{R}^{n}Let L=−Δ+|ξ|2 be the harmonic oscillator on \mathbbRn\mathbb{R}^{n} , with the associated Riesz transforms R2j−1=(∂/∂ξj)L−1/2,R2jjL−1/2. We give a shorter proof of a recent result of Harboure, de Rosa, Segovia, Torrea: For 1<p<∞ and a dimension free constant Cp,
||(?k=12n|Rk(f)|2)1/2||Lp(\mathbbRn,dx)\leqslant Cp||f||Lp(\mathbbRn,dx).\bigg\Vert \bigg(\sum_{k=1}^{2n}\vert R_{k}(f)\vert ^{2}\bigg)^{{1}/{2}}\bigg\Vert _{L^{p}(\mathbb{R}^{n},\mathrm{d}\xi )}\leqslant C_{p}\Vert f\Vert _{L^{p}(\mathbb{R}^{n},\mathrm{d}\xi )}.  相似文献   

10.
We study the asymptotics of the spectrum of the Maxwell operator M in a bounded Lipschitz domain W ì \mathbbR3 \Omega \subset {\mathbb{R}^3} under the condition of the perfect conductivity of the boundary ∂Ω. We obtain the following estimate for the remainder in the Weyl asymptotic expansion of the counting function N(λ,M) of positive eigenvalues of the Maxwell operator M:
N( l, M ) = \frac\textmeas W3p2l3( 1 + O( l - 2 / 5 ) ), N\left( {\lambda, M} \right) = \frac{{{\text{meas }}\Omega }}{{3{\pi^2}}}{\lambda^3}\left( {1 + O\left( {{\lambda^{{{{ - 2}} \left/ {5} \right.}}}} \right)} \right),  相似文献   

11.
In this paper we consider the boundary blow-up problem Δpua(x)uq in a smooth bounded domain Ω of \mathbbRN{\mathbb{R}}^N, with u = +∞ on ∂Ω. Here Dpu = div(|?u|p-2?u)\Delta_{p}u = {\rm div}(|\nabla u|^{p-2}\nabla u) is the well-known p-Laplacian operator with p > 1, qp − 1, and a(x) is a nonnegative weight function which can be singular on ∂Ω. Our results include existence, uniqueness and exact boundary behavior of positive solutions.  相似文献   

12.
In this paper, we mainly study polynomial generalized Vekua-type equation _boxclose)w=0{p(\mathcal{D})w=0} and polynomial generalized Bers–Vekua equation p(D)w=0{p(\mathcal{\underline{D}})w=0} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} where D{\mathcal{D}} and D{\mathcal{\underline{D}}} mean generalized Vekua-type operator and generalized Bers–Vekua operator, respectively. Using Clifford algebra, we obtain the Fischer-type decomposition theorems for the solutions to these equations including (D-l)kw=0,(D-l)kw=0(k ? \mathbbN){\left(\mathcal{D}-\lambda\right)^{k}w=0,\left(\mathcal {\underline{D}}-\lambda\right)^{k}w=0\left(k\in\mathbb{N}\right)} with complex parameter λ as special cases, which derive the Almansi-type decomposition theorems for iterated generalized Bers–Vekua equation and polynomial generalized Cauchy–Riemann equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}. Making use of the decomposition theorems we give the solutions to polynomial generalized Bers–Vekua equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} under some conditions. Furthermore we discuss inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}, and develop the structure of the solutions to inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}.  相似文献   

13.
In this paper we consider the following problem $\left\{\begin{array}{l} -\Delta u=u-\left|u\right|^{-2\theta}u+f \\u \in H^1(\mathbb{R}^N)\cap L^{2(1-\theta)}(\mathbb{R}^N)\end{array}\right.$ ${f \in L^2(\mathbb{R}^N)\cap L^\frac{2(1-\theta)}{1-2\theta}(\mathbb{R}^N),\, N\geq 3,\, f\geq 0,\, f \neq 0}In this paper we consider the following problem
{l -Du=u-|u|-2qu+f u ? H1(\mathbbRN)?L2(1-q)(\mathbbRN)\left\{\begin{array}{l} -\Delta u=u-\left|u\right|^{-2\theta}u+f \\u \in H^1(\mathbb{R}^N)\cap L^{2(1-\theta)}(\mathbb{R}^N)\end{array}\right.  相似文献   

14.
It is proved that if Ω ⊂ Rn {R^n}  is a bounded Lipschitz domain, then the inequality || u ||1 \leqslant c(n)\textdiam( W)òW | eD(u) | {\left\| u \right\|_1} \leqslant c(n){\text{diam}}\left( \Omega \right)\int\limits_\Omega {\left| {{\varepsilon^D}(u)} \right|} is valid for functions of bounded deformation vanishing on ∂Ω. Here eD(u) {\varepsilon^D}(u) denotes the deviatoric part of the symmetric gradient and òW | eD(u) | \int\limits_\Omega {\left| {{\varepsilon^D}(u)} \right|} stands for the total variation of the tensor-valued measure eD(u) {\varepsilon^D}(u) . Further results concern possible extensions of this Poincaré-type inequality. Bibliography: 27 titles.  相似文献   

15.
Let ${\mathbb{A}}Let \mathbbA{\mathbb{A}} be a universal algebra of signature Ω, and let I{\mathcal{I}} be an ideal in the Boolean algebra P\mathbbA{\mathcal{P}_{\mathbb{A}}} of all subsets of \mathbbA{\mathbb{A}} . We say that I{\mathcal{I}} is an Ω-ideal if I{\mathcal{I}} contains all finite subsets of \mathbbA{\mathbb{A}} and f(An) ? I{f(A^{n}) \in \mathcal{I}} for every n-ary operation f ? W{f \in \Omega} and every A ? I{A \in \mathcal{I}} . We prove that there are 22à0{2^{2^{\aleph_0}}} Ω-ideals in P\mathbbA{\mathcal{P}_{\mathbb{A}}} provided that \mathbbA{\mathbb{A}} is countably infinite and Ω is countable.  相似文献   

16.
17.
The field of quaternions, denoted by \mathbbH{\mathbb{H}} can be represented as an isomorphic four dimensional subspace of \mathbbR4×4{\mathbb{R}^{4\times 4}}, the space of real matrices with four rows and columns. In addition to the quaternions there is another four dimensional subspace in \mathbbR4×4{\mathbb{R}^{4\times 4}} which is also a field and which has – in connection with the quaternions – many pleasant properties. This field is called field of pseudoquaternions. It exists in \mathbbR4×4{\mathbb{R}^{4\times 4}} but not in \mathbbH{\mathbb{H}}. It allows to write the quaternionic linear term axb in matrix form as Mx where x is the same as the quaternion x only written as a column vector in \mathbbR4{\mathbb{R}^4}. And M is the product of the matrix associated with the quaternion a with the matrix associated with the pseudoquaternion b.  相似文献   

18.
Let B be the unit ball in ${\mathbb{R}^N}Let B be the unit ball in \mathbbRN{\mathbb{R}^N}, N ≥ 3 and n be the exterior unit normal vector on the boundary. We consider radial solutions to
D2 u = l(1+ sign(p)u)p     in  B,     u = 0,     \frac?u?n = 0     on  ?B\Delta^2 u = \lambda(1+ {\rm sign}(p)u)^{p} \quad {\rm in} \, B, \quad u = 0, \quad \frac{\partial{u}}{\partial{n}} = 0 \quad {\rm on} \, \partial B  相似文献   

19.
This paper is concerned with the following periodic Hamiltonian elliptic system
{l-Du+V(x)u=g(x,v) in  \mathbbRN,-Dv+V(x)v=f(x,u) in  \mathbbRN,u(x)? 0 and v(x)?0 as  |x|?¥,\left \{\begin{array}{l}-\Delta u+V(x)u=g(x,v)\, {\rm in }\,\mathbb{R}^N,\\-\Delta v+V(x)v=f(x,u)\, {\rm in }\, \mathbb{R}^N,\\ u(x)\to 0\, {\rm and}\,v(x)\to0\, {\rm as }\,|x|\to\infty,\end{array}\right.  相似文献   

20.
Consider a random smooth Gaussian field G(x): F ? \mathbbR F \to \mathbb{R} , where F is a compact set in \mathbbRd {\mathbb{R}^d} . We derive a formula for the average area of a surface determined by the equation G(x) = 0 and give some applications. As an auxiliary result, we obtain an integral expression for the area of a surface determined by zeros of a nonrandom smooth field. Bibliography: 13 titles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号