首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grain boundary layers in nanocrystalline ferromagnetic zinc oxide   总被引:1,自引:0,他引:1  
The complete solubility of an impurity in a polycrystal increases with decreasing grain size, because the impurity dissolves not only in the crystallite bulk but also on the grain boundaries. This effect is especially strong when the adsorption layers (or the grain boundary phases) are multilayer. For example, the Mn solubility in the nanocrystalline films (where the size of grains is ∼20 nm) is more than three times greater than that in the ZnO single crystals. The thin nanocrystalline Mn-doped ZnO films in the Mn concentration range 0.1–47 at % have been obtained from organic precursors (butanoates) by the “liquid ceramic” method. They have ferromagnetic properties, because the specific area of the grain boundaries in them is greater than the critical value [B.B. Straumal et al., Phys. Rev. B 79, 205206 (2009)]. The high-resolution electron transmission microscopy studies show that the ZnO nanocrystalline grains with the wurtzite lattice are separated by amorphous layers whose thickness increases with the Mn concentration. The morphology of these layers differs greatly from the structure of the amorphous prewetting films on the grain boundaries in the ZnO:Bi2O3 system.  相似文献   

2.
A model is developed for the plastic deformation of nanocrystalline materials in terms of the evolution of a spatial grid of disclinations located at the triple junctions of grains. Plastic deformation takes place as the result of plastic rotation of grains, the mismatch of whose rotations causes the nucleation of partial disclinations at the junctions of intergrain boundaries. It is shown that the distinctive feature of the mechanical behavior of nanocrystals is a deviation from the Hall-Petch law up to a critical grain size D cr⩽25 nm. Fiz. Tverd. Tela (St. Petersburg) 39, 2023–2028 (November 1997)  相似文献   

3.
The space charging properties of grain boundaries in GaAs are discussed using an extended Read dislocation model. Model calculations for medium to high angle grain boundaries show: (1) the core-site occupational probability for a dislocation at the grain boundary is at least an order of magnitude lower than would be expected on the basis of simple Read theory; (2) due to the strong core-core interaction of the dislocations, the depletion width W decreases with an increase in tilt angle θ: and (3) W is approximately independent of θ in highly doped (ND ? 1017/cm3) material. Comparisons between model predictions and experimentally determined depletion widths of grain boundaries in GaAs are presented.  相似文献   

4.
The experimentally measured dependence of the photo-emf on the remanent polarization in thin-film M/Pb(Zr,Ti)O3(PZT)/M capacitors correlates well with the model developed by us for the intergrain photovoltaic effect for films with columnar structure of PZT grains and heterophase intergrain boundaries. In this case, the photo-emf is determined by the depolarization field generated by the uncompensated polarization charge at PZT grain boundaries. It is shown that the magnitude and orientation of the built-in field in an intergrain channel of such PZT films can be derived from measurements of the photo-emf at zero polarization with a sensitivity on the order of a few millivolts.  相似文献   

5.
A theoretical model is proposed for the homogeneous nucleation of glide dislocation loops in nanocrystalline ceramics under deformation at low and high temperatures. The nucleation of a dislocation loop in a crystalline grain is considered an ideal nanoscopic shear whose magnitude (the Burgers vector of the dislocation) increases gradually as the loop is nucleating. The characteristics of the homogeneous nucleation of glide dislocation loops in nanocrystalline ceramics based on cubic silicon carbide are calculated. It is shown that, in general, the homogeneous nucleation of a dislocation loop in nanocrystalline ceramics at high temperatures proceeds in two stages, namely, the athermal nucleation of a loop of a “noncrystallographic” partial dislocation and its thermally activated transformation into an ordinary partial lattice dislocation loop.  相似文献   

6.
A model has been proposed for calculating the grain size optimum for the deformation of nanocrystalline and microcrystalline materials under superplasticity conditions. The model is based on the concepts of the theory of nonequilibrium grain boundaries in metals. It has been demonstrated that the optimum grain size d opt can be calculated as the size at which a high level of nonequilibrium of grain boundaries is combined with a high intensity of the accommodation of grain boundary sliding. The dependences of the quantity d opt on the rate and temperature of the strain and the thermodynamic parameters of the material have been derived. The results obtained have been compared with the experimental data on the superplasticity of nanocrystalline and microcrystalline aluminum and magnesium alloys.  相似文献   

7.
The magnetic properties of an isotropic, epoxy resin bonded magnets made from Pr-Fe-Co-Nb-B powder were investigated. The magnetization reversal process and magnetic parameters were examined by measurements of the initial magnetization curve, major and minor hysteresis loops and sets of recoil curves. From the initial magnetization curve and the field dependencies of the reversible and irreversible magnetization components derived from the recoil loops it was found that the magnetization reversal process is the combination of the nucleation of reversed domains and pinning of domain walls at the grain boundaries and the reversible rotation of magnetization vector in single domain grains. The interactions between grains were studied by means of δM plots. The nonlinear behavior of δM curve approve that the short range intergrain exchange coupling interactions are dominant in a field up to the sample coercivity.The interaction domains and fine magnetic structure were revealed as the evidence of exchange coupling between soft α-Fe and hard magnetic Nd2Fe14B grains.  相似文献   

8.
The grain size distributions and related mechanisms in nanocomposite films with nanostructures comprising a nanocrystalline (nc) phase surrounded by an amorphous (a) matrix under different amorphous phase amounts (V a) have been analyzed by using a Monte Carlo grain growth model. The results show that with the V a value increasing to a critical value of ~28%, the grain size distribution approaches lognormality, and it becomes off-lognormal when the V a value is larger or smaller than ~28%. The simulated results are in a good agreement with the experiment. It is shown that the homogenous or inhomogeneous grain growth mode, determined by the energy exerted on the grain boundary, originates in lognormal or off-lognormal grain size distributions in nanocomposite films. Also, in a system with lognormal grain size distribution, the amorphous phase just covers all grain boundaries (GBs) and the length obtained by summing the boundary circumference of all nanograins is the longest. It is expected that this microstructure can result in exceptional properties of nanocomposite films.  相似文献   

9.
The dependence of the strain-rate sensitivity coefficient of flow stresses S = dlnσ/dln\(\dot \varepsilon \) on temperature, strain rate, and grain size in nanocrystalline (NC) metals is analyzed quantitatively in terms of the dislocation-kinetics approach taking into account the properties of grain boundaries as sources, sinks, and barriers for moving dislocations. The interaction of moving dislocations with a dislocation forest in nanograin boundaries is shown to be responsible for the fact that the values of this coefficient in NC fcc metals (Cu, Ni) are an order of magnitude greater than those in coarse-grained metals and for the strong dependence of the coefficient S on the above factors. This dependence is largely caused by the annihilation of lattice dislocations in grain boundaries controlled by the activation energy of grain boundary diffusion. The values of the coefficient S in NC bcc metals (α-Fe) are an order of magnitude lower than those in coarse-grained samples, because dislocations move in a Peierls relief in nanograins  相似文献   

10.
Pulsed laser ablation (PLA) was applied to synthesize nanocrystalline PbWO4 thin films onto glass substrates. The effects of Ar background gas pressure on phase evolution, microstructures and optical characteristics of PbWO4 thin films were investigated in detail. The PLA processes were carried out at room temperature without substrate heating or post-annealing treatment. XRD and HR-TEM results revealed that the PbWO4 thin films are composed of nanocrystalline and amorphous phases. Moreover, the films contained a high density of lattice defects such as twin boundaries and edge dislocations. The crystallite size and crystallinity increased, which were associated with a change in surface morphology as the Ar pressure increased. Reduced tungsten states W5+ or W4+ induced by oxygen vacancies were observed at 10 Pa and the atomic concentration of all constituent element was almost stoichiometric, especially the [Pb]/[W] ratio, which was nearly unity above 50 Pa. The optical energy band-gap was 3.03 eV at 50 Pa and increased to 3.35 eV at 100 Pa, which are narrower than the reported value (4.20 eV). This optical band-gap narrowing could be attributed to localized band-tail states and new energy levels induced by the amorphous structure and inherent lattice defects. PACS 81.15.Fg; 78.20.-e; 68.55.-a; 73.22.-f  相似文献   

11.
The effect of the concentration of a rare-earth component on the parameters of the nanocrystalline structure formed during crystallization of an amorphous phase in the Al88Ni6Y6 and Al88Ni10Y2 alloys is studied using X-ray diffraction and transmission electron microscopy. It is shown that, as the yttrium concentration increases, the nanocrystal size increases and the content of the nanocrystalline component of the structure decreases. The precipitation of nanocrystals is accompanied by separation of the amorphous matrix into regions with different radii of the first coordination spheres due to the enrichment or depletion with the rare-earth element. The parameters of the nanocrystalline structure support the assumption of the heterogeneous nucleation of the nanocrystals.  相似文献   

12.
Theoretical model is suggested that describes the effects of the cooperative nanograin boundary sliding and stress-driven nanograin boundary migration (CNGBSM) process on the lattice dislocation emission from an elliptically blunt nanocrack tip in deformed nanocrystalline materials. Within the model, CNGBSM deformation near the tip of growing nanocrack carries plastic flow, produces two dipoles of disclination defects and creates high local stresses in nanocrystalline materials. By using the complex variable method, the complex form expression of dislocation force is derived, and critical stress intensity factors for the first lattice dislocation emission are obtained under mode I and mode II loading conditions, respectively. The combined effects of the geometric features and strengths of CNGBSM deformation, nanocrack blunting and length on critical SIFs for dislocation emission depend upon nanograin size and material parameters in a typical situation where nanocrack blunting and growth processes are controlled by dislocation emission from nanocrack tips. It is theoretically shown that the cooperative CNGBSM deformation and nanocrack blunting have great influence on dislocation emission from blunt nanocrack tip.  相似文献   

13.
Carbon–cadmium alloy film coating solid solutions coexisting with amorphous carbon are for the first time obtained via ion-plasma sputtering and the codeposition of ultrafine particles of the above elements onto moving substrates. The concentration boundary of the existence of carbon solid solutions in cadmium is found to be a total carbon content in the coating of 63.5 at % (15.66 wt %). Upon the vacuum heat treatment of carbon–cadmium films with a carbon concentration of more than 57.5 at %, almost total evaporation of cadmium occurs with the formation of an amorphous carbon coating. During annealing at 1100°C, the amorphous carbon is found to crystallize into a new phase with a hexagonal primitive lattice and the parameters а = 0.6405 and с = 0.7828 nm. The face-centered cubic (fcc) phase of carbon with the lattice parameter а = 0.4265 nm is recorded in the nanocrystalline formations. The behavior of the initial film coating components during heating in vacuum is assumed, as well.  相似文献   

14.
A micromechanism of the transition from intergrain sliding to intragrain glide by nucleation and emission of lattice partial dislocations at grain-boundary dislocations is proposed and described theoretically. The energy characteristics of this process are calculated. It is shown that the nucleation of lattice partial dislocations is energetically efficient and can occur athermally (without the energy barrier) under conditions of the action of ultrahigh mechanical stresses. The critical stresses required for the athermal nucleation and emission of dislocations are calculated.  相似文献   

15.
The formation and structure of the nanocrystalline phase in the Al86Ni11Yb3 alloy are investigated using differential scanning calorimetry (DSC), transmission electron and high-resolution electron microscopy, and x-ray diffraction. The nanocrystalline phase is formed upon controlled crystallization of the amorphous alloy prepared by quenching of the melt on a rapidly moving substrate. It is revealed that the nanocrystalline alloy consists of aluminum nanocrystals (5–12 nm in size) randomly distributed in the amorphous matrix. The maximum fraction of the nanocrystalline phase does not exceed 25%. The nanocrystal size substantially increases at the initial stage of isothermal treatment (at 473 K) and then changes insignificantly. It is found that nanocrystals are usually free of defects. However, some nanocrystals have a more complex microstructure with twins and dislocations. The size distributions of nanocrystals are determined at several durations of isothermal treatment. It is demonstrated that the nucleation of nanocrystals predominantly occurs through the heterogeneous mechanism. The experimental distributions are compared with those obtained from a computer simulation. The activation energy of crystallization, the time-lag, and the coefficient of ytterbium diffusion in the alloy are estimated  相似文献   

16.
A new micromechanism of nucleating deformation twins in nanocrystalline and ultrafine-grained materials under action of severe mechanical stresses has been proposed and theoretically described. The mechanism is a subsequent splitting of grain-boundary dislocations into lattice partial and sessile grain-boundary dislocations. Ensembles of gliding partial dislocation forms deformation twins. The energy characteristics of this process are calculated. The nucleation of the twins is shown to be energetically profitable and can be athermic (without an energy barrier) under conditions of severe mechanical stress. The dependence of a critical stress at which the barrier-less nucleation of twins took place on the widths of these twins is calculated.  相似文献   

17.
The kinetics of barium precipitation at dislocations in NaCl monocrystals has been studied in thermally and mechanically treated NaCl + 4 ppm BaCl2 samples by investigating the isothermic variation of ionic conductivity as a function of time. The course of precipitation which takes place at dislocations located at grain boundaries can be divided into three time regions characterized by diffusion of impurities to dislocation cores at grain boundaries, nucleation, formation of new grain boundaries, etc. At higher number of dislocations an interruption of the precipitation appears due to a local free energy of nucleation minimum at radiusr 0=6·92×10–8 cm.  相似文献   

18.
A three-dimensional model for the generation of split dislocations by grain boundaries in nanocrystalline A1 is proposed. In terms of this model, rectangular glide split-dislocation half-loops nucleate at glide lattice dislocation loops pressed to grain boundaries by an applied stress. The level of the applied stress and the grain size at which the emission of such dislocation half-loops becomes energetically favorable are determined. The dependences of the stacking-fault width on the grain size and the applied stress are found. The anomalously wide stacking faults experimentally detected in nanocrystalline A1 are shown to be caused by high internal stresses forming in the stages of preparation, treatment, or local loading of nanocrystalline samples.  相似文献   

19.
(001)-oriented strontium bismuth tantalate thin films have been grown on Pt/TiO2/SiO2/Si (100) substrates by pulsed laser deposition. The room-temperature current–electric field dependence of the films has been investigated, which revealed a space-charge-limited conduction mechanism. The microstructures of grain boundaries and structural defects in these films were also examined by transmission electron microscopy and high-resolution transmission electron microscopy, respectively. The grains of the films deposited at 550 °C exhibited polyhedral morphologies, and the average grain size was about 50 nm in length and 35 nm in width. At a small misorientation angle (8.2°) tilt boundary, a regular array of edge dislocations with about 3-nm periodic distance was observed, and localized strain contrast near the dislocation cores was also observed. The Burgers vector b of the edge dislocation was determined to be [110]. At a high misorientation angle (39.0°) tilt grain boundary lattice strain contrast associated with the distortion of lattice planes was observed, and the mismatching lattice images occurred at about 2 nm along the boundary. The relationship between microstructural defects at grain boundaries and leakage currents of these films is also discussed. Received: 8 September 2000 / Accepted: 18 December 2000 / Published online: 28 February 2001  相似文献   

20.
An earlier dislocation model for predicting the grain size effect on deformation twinning in nanocrystalline (nc) face-centred-cubic (fcc) metals has been found valid for pure metals but problematic for alloys. The problem arises from the assumption that the stacking-fault energy (γSF) is twice the coherent twin-boundary energy (γfcc), which is approximately correct for pure fcc metals, but not for alloys. Here we developed a modified dislocation model to explain the deformation twinning nucleation in fcc alloy systems, where γSF ≠ 2γtwin. This model can explain the differences in the formations of deformation twins in pure metals and alloys, which is significant in low stacking-fault energy alloys. We also describe the procedure to calculate the optimum grain size for twinning in alloy systems and present a method to estimate γtwin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号