首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
原子力显微镜在多糖结构研究中的进展   总被引:10,自引:0,他引:10  
简述了原子力显微镜(AFM)的工作原理和特点,以及在多糖,特别是在淀粉结构研究中的进展。  相似文献   

3.
结合作者近期的研究工作,重点介绍了如何把原子力显微镜(AFM)成像及单分子力谱结合(包括原位结合或者离位结合)起来,研究高分子之间的相互作用.本文涉及生物高分子(主要是核酸-蛋白质体系)以及合成高分子体系(如聚氧乙烯,PEO)的相关研究工作.对于生物高分子体系,主要以长链核酸(如双螺旋DNA及RNA)为探针,首先利用AFM成像(包括静态AFM成像及溶液中原位成像)考察了蛋白与DNA结合后对DNA拓扑构象的影响规律;接着讲述利用AFM单分子力谱揭示双螺旋DNA外力诱导下构象转变的本质以及利用双螺旋DNA的力学指纹谱来研究蛋白质结合对指纹谱的影响规律,从而揭示DNA结合蛋白对DNA动态构象的影响规律.同时还尝试将此方法用于研究完整病毒(烟草花叶病毒)颗粒中RNA与蛋白质外壳间的相互作用,拓展AFM单分子力谱方法在相对复杂生物体系中核酸与蛋白相互作用研究中的应用.对于合成高分子体系,主要讲述了如何利用AFM成像及单分子力谱来研究高分子凝聚态(这里主要是高分子单晶)中的分子间相互作用.选取了PEO为研究对象,首先利用AFM成像来定位高分子单晶中的单个聚合物链,然后将该聚合物链从其单晶中提拉出来直接定量测得高分子单晶中的分子间相互作用强度等信息.这些定量的分子间、分子内相互作用信息对于揭示DNA复制等重要生命过程的分子机理以及高性能高分子材料的分子设计具有重要意义.  相似文献   

4.
崔树勋 《高分子学报》2016,(9):1160-1165
生物大分子是构成生命的物质基础,在其天然环境——水溶液中一般以精确的超分子结构存在.迄今,人们已经合成了种类繁多的水溶性高分子.然而,鲜有合成高分子能够在水溶液中完成精确的超分子组装.与合成高分子相比,生物大分子是特殊而神奇的.为了研究生物大分子与水的相互作用,近年来作者以单分子力谱为主要的实验方法,开展了生物大分子在水溶液与非极性溶剂中的对照研究.研究表明,在非极性溶剂中,生物大分子的超分子结构失稳,转变为无超分子结构的状态.水是一个重要的开关,调控着生物大分子的超分子结构和功能.作者据此提出了生物大分子的水环境适应性概念和早期化学进化过程中水环境筛选生物大分子的假说,并认为水环境适应性是生物大分子和合成水溶性高分子的分水岭.对水和生物大分子的深入研究,将有望破解生命的更多奥秘.  相似文献   

5.
原子力显微镜在蛋白单分子结构与功能研究中的应用   总被引:7,自引:0,他引:7  
朱杰  孙润广 《分析化学》2006,34(5):735-740
原子力显微镜(AFM)以其超常的信噪比、空间分辨率和灵活的探测环境使得单个蛋白分子能在生理条件下成像,在蛋白单分子结构与功能研究中得到广泛地应用。论文介绍了AFM在分子马达、光合蛋白、分子伴侣等蛋白表面结构表征中的应用;AFM在蛋白单分子表面的粘弹性、电荷分布、分子间相互作用等物理属性研究中的进展;总结了AFM在蛋白分子功能研究和单分子操纵中的应用。  相似文献   

6.
基于原子力显微镜的高分子单分子力学研究   总被引:1,自引:0,他引:1  
原子力显微镜(AFM)从根本上改变了人们对单个原子和分子的作用和认识方式。单分子力谱是基于原子力显微镜力的测量方法。概速了近年来利用基于原子力显微镜的单分子力谱研究单个高分子分子内及分子闻作用力的进展。  相似文献   

7.
原子力显微镜(Atomic force microscopy,AFM)及荧光显微镜(Fluorescence microscopy,FM)是目前活细胞单分子分析检测中最常用的两种工具.结合两种显微镜的优势,发展高时空分辨、多功能的AFM-FM联用技术成为近年该领域的研究热点.本文简述了AFM单分子力谱和FM单分子荧光成像的原理,总结了AFM-FM联用系统在仪器研制方面的发展概况,并结合本课题组在应用AFM-FM联用技术研究细胞膜上配受体相互作用等方面的工作,介绍了其在活细胞单分子检测中的应用进展.  相似文献   

8.
自从1986年发明原子力显微镜(AFM)以来,AFM已经发展成为应用最为广泛的扫描探针显微镜[1],它给材料科学家、化学家和生物学家提供了一个极为便利的研究手段.目前,原子力显微镜的空间分辨率已经达到原子尺度,同时又具有非常高的力的敏感性,可以探测10 pN的力,这就为研究单分子的性质提供了可能性[2,3].  相似文献   

9.
研究聚合物在力致结构转变过程中的分子机制,进而建立起材料的构效关系,对于力响应聚合物材料的设计和精准制备至关重要.然而由于真实材料体系的复杂性,使用传统的测量方法很难从分子水平精准表征上述过程.基于原子力显微镜(AFM)的单分子力谱(SMFS)可以操纵单个聚合物链,是一种研究单个分子力学和动力学性质的有效技术.本文首先重点介绍了力化学的基本概念、影响因素和自由聚合物链单分子力化学的最新进展,按照共价键、配位键及氢键体系的顺序展开.然后讨论了SMFS技术在凝聚态体系的单链力学响应中的应用,包括用于聚合物单晶研究的AFM-SMFS方法的建立,链组成、构象、折叠模式以及环境对力诱导聚合物单晶熔融和纳米力学性能等影响规律的探究.希望本文将引起材料、化学和计算研究界的进一步关注,并加深科研人员们对聚合物结构-性质(功能)关系的理解.  相似文献   

10.
于婵婵  姚立 《化学通报》2016,79(4):292-298
近年来,单分子力谱技术获得了快速发展和广泛应用。通过单分子力谱技术研究生物分子结构、力学及动力学,在单分子水平上揭示生物分子间相互作用机制,对于深入了解生物分子的特异识别、生化过程以及生物分子结构与功能的关系具有重要意义。本文主要介绍了3种最常见的单分子力谱技术:原子力显微镜(AFM),光镊(OT)和磁镊(MT)。另外,还侧重从不同力谱技术的原理、发展及应用三个方面简要介绍了3种大规模并行测量的单分子力谱技术:声力谱(AFS)、离心力显微镜(CFM)以及力诱导剩磁谱技术(FIRMS)。  相似文献   

11.
    
《应用化学》2012,29(12):1356
Abstract: Atomic force microscopy(AFM) is widely used in biological research, AFM based single molecule force spectroscopy can be applied to study the intramolecular and intermolecular interactions of biomolecules at the single-molecule and single-cell levels. In this paper, we present the latest progress of AFM based single molecule force spectroscopy in biomolecular interaction, protein unfolding, cell surface biomolecules, cell mechanical properties and single molecule force spectroscopy imaging.  相似文献   

12.
    
Directly observing protein folding in real time using atomic force microscopy (AFM) is challenging. Here the use of AFM to directly monitor the folding of an α/β protein, NuG2, by using low‐drift AFM cantilevers is demonstrated. At slow pulling speeds (<50 nm s?1), the refolding of NuG2 can be clearly observed. Lowering the pulling speed reduces the difference between the unfolding and refolding forces, bringing the non‐equilibrium unfolding–refolding reactions towards equilibrium. At very low pulling speeds (ca. 2 nm s?1), unfolding and refolding were observed to occur in near equilibrium. Based on the Crooks fluctuation theorem, we then measured the equilibrium free energy change between folded and unfolded states of NuG2. The improved long‐term stability of AFM achieved using gold‐free cantilevers allows folding–unfolding reactions of α/β proteins to be directly monitored near equilibrium, opening the avenue towards probing the folding reactions of other mechanically important α/β and all‐β elastomeric proteins.  相似文献   

13.
This contribution reviews selected mechanical experiments on individual flexible macromolecules using single-molecule force spectroscopy (SMFS) based on atomic force microscopy. Focus is placed on the analysis of elasticity and conformational changes in single polymer chains upon variation of the external environment, as well as on conformational changes induced by the mechanical stress applied to individual macromolecular chains. Various experimental strategies regarding single-molecule manipulation and SMFS testing are discussed, as is theoretical analysis through single-chain elasticity models derived from statistical mechanics. Moreover, a complete record, reported to date, of the parameters obtained when applying the models to fit experimental results on synthetic polymers and polysaccharides is presented.  相似文献   

14.
We report combined atomic force and far-field fluorescence microscopic experiments which allow the simultaneous atomic force manipulation and optical observation of individual dye-labeled DNA molecules. A detailed understanding of the binding properties of DNA to different transparent surfaces is prerequisite for these investigations. Atomic force spectroscopy and fluorescence microscopy of single DNA strands yielded detailed insight into two different types of DNA binding onto transparent polylysine-coated and silanized glass surfaces. We subsequently demonstrate how the different binding can be exploited to perform two types of nanomanipulation experiments: On polylysine, strong electrostatic interactions over the whole length of the DNA strand enable the writing of micrometer-sized patterns. By contrast, the strong pointwise attachment of DNA to silanized surfaces allows horizontal stretching of single DNA strands to lengths exceeding 1.6 times the contour length of the DNA strand. With this new approach it is possible to directly observe the rupture of the strongly bonded DNA strand.  相似文献   

15.
16.
17.
18.
Membrane proteins are involved in essential biological processes such as energy conversion, signal transduction, solute transport and secretion. All biological processes, also those involving membrane proteins, are steered by molecular interactions. Molecular interactions guide the folding and stability of membrane proteins, determine their assembly, switch their functional states or mediate signal transduction. The sequential steps of molecular interactions driving these processes can be described by dynamic energy landscapes. The conceptual energy landscape allows to follow the complex reaction pathways of membrane proteins while its modifications describe why and how pathways are changed. Single‐molecule force spectroscopy (SMFS) detects, quantifies and locates interactions within and between membrane proteins. SMFS helps to determine how these interactions change with temperature, point mutations, oligomerization and the functional states of membrane proteins. Applied in different modes, SMFS explores the co‐existence and population of reaction pathways in the energy landscape of the protein and thus reveals detailed insights into local mechanisms, determining its structural and functional relationships. Here we review how SMFS extracts the defining parameters of an energy landscape such as the barrier position, reaction kinetics and roughness with high precision.  相似文献   

19.
    
Summary: Progress in the development of a redox‐driven macromolecular motor and the characterization of its redox‐mechanical cycle using electrochemical AFM‐based single‐molecule force spectroscopy (SMFS) is described. The elasticities of individual neutral and oxidized poly(ferrocenyldimethylsilane) (PFS) macromolecules were reversibly controlled in situ by adjusting the potential in electrochemical SMFS experiments. For the operating cycle of one individual PFS‐based molecular motor, an output of 3.4 × 10−19 J and an efficiency of 5% have been estimated.

Force‐extension curves of a single‐molecule motor.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号