首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The low-temperature thermal expansion of CeCoIn(5) single crystals measured parallel and perpendicular to magnetic fields B oriented along the c axis yields the volume thermal-expansion coefficient β. Considerable deviations of β(T) from Fermi-liquid behavior occur already within the superconducting region of the (B, T) phase diagram and become maximal at the upper critical field B(c2)(0). However, β(T) and the Grüneisen parameter Γ are incompatible with a quantum critical point at B(c2)(0), but allow for a quantum criticality shielded by superconductivity and extending to negative pressures for B相似文献   

2.
The density-matrix renormalization group is used to study the phase diagram of the one-dimensional half-filled Hubbard model with on-site (U) and nearest-neighbor (V) repulsion and hopping t. A critical line V(c)(U) approximately U/2 separates a Mott insulating phase from a charge-density-wave phase. The formation of bound charge excitations for V>2t changes the phase transition from continuous to first-order at a tricritical point U(t) approximately 3.7t, V(t)=2t. A frustrating effective antiferromagnetic spin coupling induces a bond-order-wave phase on the critical line V(c)(U) for U(t)相似文献   

3.
Stability of metastable phase states against infinitesimal perturbations in a simple one-component system is considered. The method of molecular dynamics simulation was used to determine the boundaries of essential instability of supersaturated vapor, a superheated liquid, and a superheated crystal. The absence of a spinodal from a supercooled liquid and the dependence of the boundary of essential instability of a superheated crystal on the character of deformation were established. It is shown that each of the three lines of phase equilibria in a one-component system has an endpoint of termination of phase coexistence. As distinct from the liquid–gas critical point, which is the point of phase identity and is located in the region of stable states, the endpoints of melting and sublimation lines are located in the region ofmetastable states. At these points, a critical (spinodal) state is achieved only for one of the coexisting phases.  相似文献   

4.
The magnetically induced phase transitions, near the tricritical point of FeCl2 were studied by acoustic velocity measurements. Longitudinal waves propagating along the (100) trigonal axis exhibit a critical shift in the velocity along the second order λ-line and anomalous change at the first order phase transitions. The phase diagram in the plane of temperature and applied magnetic field is constructed near the tricritical point.  相似文献   

5.
The presence of a critical point in the QCD phase diagram can deform the trajectories describing the evolution of the expanding fireball in the mu_B-T phase diagram. If the average emission time of hadrons is a function of transverse velocity, as microscopic simulations of the hadronic freeze-out dynamics suggest, the deformation of the hydrodynamic trajectories will change the transverse velocity (beta_T) dependence of the proton-antiproton ratio when the fireball passes in the vicinity of the critical point. An unusual beta_T dependence of the [over]p/p ratio in a narrow beam energy window would thus signal the presence of the critical point.  相似文献   

6.
We present a numerical study of the spin-1/2 bilayer Heisenberg antiferromagnet with random interlayer dimer dilution. From the temperature dependence of the uniform susceptibility and a scaling analysis of the spin correlation length we deduce the ground state phase diagram as a function of nonmagnetic impurity concentration p and bilayer coupling g. At the site percolation threshold, there exists a multicritical point at small but nonzero bilayer coupling g(m)=0.15(3). The magnetic properties of the single-layer material La(2)Cu(1-p)(Zn,Mg)(p)O4 near the percolation threshold appear to be controlled by the proximity to this new quantum critical point.  相似文献   

7.
We investigate quantum phase transitions in the frustrated antiferromagnetic Heisenberg model for SrCu2(BO3)(2) by using the series expansion method. It is found that a novel spin-gap phase, adiabatically connected to the plaquette-singlet phase, exists between the dimer and the magnetically ordered phases known thus far. When the ratio of the competing exchange couplings alpha( = J'/J) is varied, this spin-gap phase exhibits a first- (second-) order quantum phase transition to the dimer (the magnetically ordered) phase at the critical point alpha(c1) = 0.677(2) [ alpha(c2) = 0. 86(1)]. Our results shed light on some controversial arguments about the nature of quantum phase transitions in this model.  相似文献   

8.
The β-functions of O(N)-symmetric non-linear σ-models on the lattice were recently discovered to be non-monotonic for N 3. We explain the non-monotonic behaviour as a non-perturbative lattice effect by relating it to the Kosterlitz-Thouless transition of the XY-model. We also relate the latter transition to the phase transition of the Ising model. These relationships are established by interpolating between the O(N)- and the O(N − 1)-symmetric non-linear σ-models by suppression of the Nth component of the N-vector field with a mass term. A critical line in the coupling-mass plane connects the critical point of the Ising model (N = 1) with the critical point of the XY-model (N = 2). This line extends towards the region of non-monotonic behaviour of the β-function of the O(3)-symmetric model. The nature of the transition lines is also investigated.  相似文献   

9.
We report (17)O NMR measurements in the S=1/2 (Cu(2+)) kagome antiferromagnet Herbertsmithite ZnCu(3)(OH)(6)Cl(2) down to 45 mK in magnetic fields ranging from 2 to 12 T. While Herbertsmithite displays a gapless spin-liquid behavior in zero field, we uncover an instability toward a spin-solid phase at sub-Kelvin temperature induced by an applied magnetic field. The latter phase shows largely suppressed moments ?0.1 μ(B) and gapped excitations. The H-T phase diagram suggests the existence of a quantum critical point at the small but finite magnetic field μ(0)H(c)=1.55(25) T. We discuss this finding in light of the perturbative Dzyaloshinskii-Moriya interaction which was theoretically proposed to sustain a quantum critical regime for the quantum kagome Heisenberg antiferromagnet model.  相似文献   

10.
In order to gain a better understanding of the origin of decoherence in superconducting flux qubits, we have measured the magnetic field dependence of the characteristic energy relaxation time (T(1)) and echo phase relaxation time (T(2)(echo)) near the optimal operating point of a flux qubit. We have measured T(2)(echo) by means of the phase cycling method. At the optimal point, we found the relation T(2)(echo) approximately 2T(1). This means that the echo decay time is limited by the energy relaxation (T(1) process). Moving away from the optimal point, we observe a linear increase of the phase relaxation rate (1/T(2)(echo)) with the applied external magnetic flux. This behavior can be well explained by the influence of magnetic flux noise with a 1/f spectrum on the qubit.  相似文献   

11.
A multicritical critical point for the two dimensional planar model is analyzed by studying an exactly soluable limit of a related model—the generalized Villain model. The statistical mechanics of this model is written in terms of vortex and symmetry breaking excitations. In these terms, the problem reduces to a kind of two dimensional problem with interacting electric charges and magnetic monopoles. In this form, the problem is manifestly self-dual. The multicritical behavior is exhibited in a three-dimensional phase space in which the axes are the coupling strength of a “square” symmetry breaking which favors four possible directions for the planar model vectors. The analysis of this multicritical point shows that it is the intersection of at least six critical lines—each with continuously varying critical indices. Two of these lines are described by the exactly soluable gaussian model. The other four are isomorphic to one another, and each one has—as a point on the line—a critical point of the Ashkin-Teller model. We argue that each of these lines might be in an equivalent universality class to the line of critical points which occurs in the Baxter and Ashkin-Teller models. We make a suggestion about which point on these critical lines might be in the same universality class as our multicritical point. Correlation functions at the intersection point are calculated and used to develop an expansion of critical indices about this point. This expansion gives a potential method for calculating the critical behavior along the critical lines of the model.  相似文献   

12.
We present highly sensitive Hall effect measurements of the heavy fermion compound CeCoIn5 down to temperatures of 55 mK. A pronounced dip in the differential Hall coefficient | partial differential rho(xy)/ partial differential H| at low temperature and above the upper critical field of superconductivity, H(c2), is attributed to critical spin fluctuations associated with the departure from Landau Fermi liquid behavior. This identification is strongly supported by a systematic suppression of this feature at elevated pressures. The resulting crossover line in the field-temperature phase diagram favors a field induced quantum critical point at mu(0)H(qc) approximately 4.1 T below H(c2)(T=0) suggesting related, yet separate, critical fields.  相似文献   

13.
Despite impressive advances, precise simulation of fluid-fluid and fluid-solid phase transitions still remains a challenging task. The present work focuses on the determination of the phase diagram of a system of particles that interact through a pair potential, ?(r), which is of the form ?(r)?=?4?[(σ/r)(2n)?-?(σ/r)(n)] with n?=?12. The vapor-liquid phase diagram of this model is established from constant-pressure simulations and flat-histogram techniques. The properties of the solid phase are obtained from constant-pressure simulations using constrained cell models. In the constrained cell model, the simulation volume is divided into Wigner-Seitz cells and each particle is confined to moving in a single cell. The constrained cell model is a limiting case of a more general cell model which is constructed by adding a homogeneous external field that controls the relative stability of the fluid and the solid phase. Fluid-solid coexistence at a reduced temperature of 2 is established from constant-pressure simulations of the generalized cell model. The previous fluid-solid coexistence point is used as a reference point in the determination of the fluid-solid phase boundary through a thermodynamic integration type of technique based on histogram reweighting. Since the attractive interaction is of short range, the vapor-liquid transition is metastable against crystallization. In the present work, the phase diagram of the corresponding constrained cell model is also determined. The latter is found to contain a stable vapor-liquid critical point and a triple point.  相似文献   

14.
Using numerical techniques and asymptotic expansions we obtain the phase diagram of a paradigmatic model of Coulomb-frustrated phase separation in systems with negative short-range compressibility. The transition from the homogeneous phase to the inhomogeneous phase is generically first order in isotropic three-dimensional systems except for a critical point. Close to the critical point, inhomogeneities are predicted to form a bcc lattice with subsequent transitions to a triangular lattice of rods and a layered structure. Inclusion of a strong anisotropy allows for second- and first-order transition lines joined by a tricritical point.  相似文献   

15.
It has recently been suggested that the organic compound NiCl2-4SC(NH2)2 (DTN) undergoes field-induced Bose-Einstein condensation (BEC) of the Ni spin degrees of freedom. The Ni S = 1 spins exhibit three-dimensional XY antiferromagnetism above a critical field H(c1) approximately 2 T. The spin fluid can be described as a gas of hard-core bosons where the field-induced antiferromagnetic transition corresponds to Bose-Einstein condensation. We have determined the spin Hamiltonian of DTN using inelastic neutron diffraction measurements, and we have studied the high-field phase diagram by means of specific heat and magnetocaloric effect measurements. Our results show that the field-temperature phase boundary approaches a power-law H - H(c1) proportional variant T(alpha)(c) near the quantum critical point, with an exponent that is consistent with the 3D BEC universal value of alpha = 1.5.  相似文献   

16.
The vortex-matter 3D to 2D phase transition is studied in micron-sized Bi(2)Sr(2)CaCu(2)O(8 + delta) single crystals using local Hall magnetization measurements. At a given temperature, the second magnetization peak, the signature of a possible 3D--2D vortex phase transition, disappears for samples smaller than a critical length. We suggest that this critical length should be equated with the 2D vortex lattice ab-plane correlation length R(2D)(c). The magnitude and temperature dependence of R(2D)(c) agree well with Larkin-Ovchinnikov collective pinning theory.  相似文献   

17.
Within mean field approximation we investigate the phase diagrams of magnetic fluids in presence of a magnetic field. In a finite field the magnetic phase transition is absent, but instead a line of first order liquid-liquid transitions ending in a critical point occurs for a magnetic interaction, which is sufficiently strong. Varying the magnetic field these critical points extend from the tricritical point at H=0 to a critical endpoint. For a fluid with Ising spins we calculate the critical lines and several tricritical exponents analytically. For Heisenberg fluids we obtain the phase diagrams from a numerical solution of the mean field equations of state. Received 20 March 1998  相似文献   

18.
张振俊  于淼  巩龙龚  童培庆 《物理学报》2011,60(9):97104-097104
本文通过二次矩M2(t)和概率分布Wn(t)数值地研究了两种扩展Harper模型的波包动力学,得到了这两种模型中各个相、各条临界线以及三相点的波包扩散情况.对于第一种扩展Harper模型,发现两个金属相中波包是弹道扩散的,在绝缘体相中波包不扩散,而在三相点以及各条临界线上波包是反常扩散的.同时,发现金属相—金属相转变的临界线上的波包动力学行为与金属相—绝缘体相转变的临界线上的相同,但三相点的动力学行为与各临 关键词: 金属绝缘体转变 扩展Harper模型 波包动力学  相似文献   

19.
Effects of normal-state resistivity rho(n) on the vortex phase diagram at low temperature T have been studied based on dc and ac complex resistivities for thick amorphous MoxSi(1-x) films. It is commonly observed irrespective of rho(n) that, in the limit T=0, the vortex-glass-transition line B(g)(T) is independent of T and extrapolates to a field below the T=0 upper critical field B(c2)(0), indicative of the quantum-vortex-liquid (QVL) phase in the regime B(g)(0)相似文献   

20.
The Yang-Lee zeros of the three-component ferromagnetic Potts model in one dimension in the complex plane of an applied field are determined. The phase diagram consists of a triple point where three phases coexist. Emerging from the triple point are three lines on which two phases coexist and which terminate at critical points (Yang-Lee edge singularity). The zeros do not all lie on the imaginary axis but along the three two-phase lines. The model can be generalized to give rise to a tricritical point which is a new type of Yang-Lee edge singularity. Gibbs phase rule is generalized to apply to coexisting phases in the complex plane.Supported in part by the National Science Foundation under Grant No. DMR-81-06151.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号