首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the title compound, C13H16N22+·2C2H4O5P, the cation lies across a twofold rotation axis in space group Fdd2. The anions are linked into molecular ladders by two O—H⃛O hydrogen bonds [H⃛O = 1.73 and 1.77 Å, O⃛O = 2.538 (2) and 2.598 (3) Å, and O—H⃛O = 160 and 170°], these ladders are linked into sheets by a single type of N—H⃛O hydrogen bond [H⃛O = 1.75 Å, N⃛O = 2.624 (3) Å and N—H⃛O = 171°] and the sheets are linked into a three‐dimensional framework by a single type of C—H⃛O hydrogen bond [H⃛O = 2.48 Å, C⃛O = 3.419 (4) Å and C—H⃛O = 167°].  相似文献   

2.
In the title compound, 4‐iodoanilinium 2‐carboxy‐6‐nitrobenzoate, C6H7IN+·C8H4NO6, the anions are linked by an O—H...O hydrogen bond [H...O = 1.78 Å, O...O = 2.614 (3) Å and O—H...O = 171°] into C(7) chains, and these chains are linked by two two‐centre N—H...O hydrogen bonds [H...O = 1.86 and 1.92 Å, N...O = 2.700 (3) and 2.786 (3) Å, and N—H...O = 153 and 158°] and one three‐centre N—H...(O)2 hydrogen bond [H...O = 2.02 and 2.41 Å, N...O = 2.896 (3) and 2.789 (3) Å, N—H...O = 162 and 105°, and O...H...O = 92°], thus forming sheets con­taining R(6), R(8), R(13) and R(18) rings.  相似文献   

3.
The molecule of the title dimeric compound, [Li2Cl2(C13­H30O6P2)2] or [LiCl{[(iPrO)2P(O)]2CH2}]2, lies about an inversion center and features tetrahedrally coordinated Li atoms. The neutral ligands each chelate to one metal center and bridge to the other center through P=O units. Unusually for lithium chloride complexes, the Cl ions are in terminal rather than bridging positions. Principal dimensions include Li—O(four‐membered ring) = 1.959 (3) and 2.056 (3) Å, Li—O(phosphonate ring) = 1.929 (3) Å, and Li—Cl = 2.293 (3) Å.  相似文献   

4.
The reaction of 2-nitro-1,4-benzenedicarboxylic acid (H2nbdc) and 2,2′-bipyridine (2,2′-bipy) with CuCl2 under hydrothermal conditions gives rise to a cyclic dimer [Cu(nbdc)(2,2′-bipy)(H2O)]2 · 2H2O (1). X-ray structural analysis revealed that 1 crystallizes in a monoclinic space group P21/c with a = 7.3801(13) Å, b = 15.305(3) Å, c = 16.333(3) Å, β = 92.951(4)°, V = 1842.5(6) Å3, and Z = 2. Compound 1 represents the first cyclic dimeric example with 1,4-benzenedicarboxylate or its derivatives, in which two carboxylates of the nbdc are nearly perpendicular due to the steric effect by the nitro group. Compound 1 also displays strong fluorescent emission in the solid state.  相似文献   

5.
The compound tetramethyl μ-monothiopyrophosphate (C4H12O6P2S) crystallizes in the monoclinic space group C 2/c, with (at -130°C) a = 10.322 Å, b = 8.229 Å, c = 12.062 Å, β = 98.44°, and Dcalc = 1.639 g/mL3 and Z = 4. The crystal structure has been determined by single crystal X-ray diffraction to give a final R value of 0.0329 for 614 independent observed reflections [F˚ > 2.5σ(F˚)]. The sulfur atom resides on a crystallographic two-fold axis. The P S P bond angle is 105.4° and the P S bond lengths are 2.093 Å. The bond angles around phosphorus range from 99.1° to 118.2°. The terminal PO bond is 1.465 Å, and the methoxyl P O bond is about 1.556 Å. The H3C O P bond angle is about 119.5°. Many structural features are interpreted in terms of π-bonding to phosphorus. Comparisons with the structures of pyrophosphate and related compounds indicate that the combined effects of increased acuteness of the P S P bond and the increased length of the P—S bonds lead to an increase of about 0.4 Å in the separation of phosphorus atoms in the sulfur-bridging compound. These facts, together with the weakness of the P S bond, must be taken into account in the interpretation of kinetic data for enzymatic reactions of phosphorothiolates as substrates in place of phosphates.  相似文献   

6.
Molecules of the title compound, C13H8I2N2O3, are linked into C(4) chains by a single N—H⋯O=C hydrogen bond [H⋯O = 2.10 Å, N⋯O = 2.832 (5) Å and N—H⋯O = 140°]. Two independent two‐centre iodo–nitro interactions, both involving the same O atom but different I atoms [I⋯O = 3.205 (3) and 3.400 (3) Å, and C—I⋯O = 160.4 (2) and 155.7 (2)°], link the hydrogen‐bonded chains into bilayers.  相似文献   

7.
Molecules of 2‐(2‐nitrophenylaminocarbonyl)benzoic acid, C14H10N2O5, are linked into centrosymmetric R(8) dimers by a single O—H⋯O hydrogen bond [H⋯O = 1.78 Å, O⋯O = 2.623 (2) Å and O—H⋯O = 178°] and these dimers are linked into sheets by a single aromatic π–π stacking interaction. The isomeric compound 2‐(4‐nitrophenylaminocarbonyl)benzoic acid crystallizes in two polymorphic forms. In the orthorhombic form (space group P212121 with Z′ = 1, crystallized from ethanol), the mol­ecules are linked into sheets of R(22) rings by a combination of one N—H⋯O hydrogen bond [H⋯O = 1.96 Å, N⋯O = 2.833 (3) Å and N—H⋯O = 171°] and one O—H⋯O hydrogen bond [H⋯O = 1.78 Å, O⋯O = 2.614 (3) Å and O—H⋯O = 173°]. In the monoclinic form (space group P21/n with Z′ = 2, crystallized from acetone), the mol­ecules are linked by a combination of two N—H⋯O hydrogen bonds [H⋯O = 2.09 and 2.16 Å, N⋯O = 2.873 (4) and 2.902 (3) Å, and N—H⋯O = 147 and 141°] and two O—H⋯O hydrogen bonds [H⋯O = 1.84 and 1.83 Å, O⋯O = 2.664 (3) and 2.666 (3) Å, and O—H⋯O = 166 and 174°] into sheets of some complexity. These sheets are linked into a three‐dimensional framework by a single C—H⋯O hydrogen bond [H⋯O = 2.45 Å, C⋯O = 3.355 (4) Å and C—­H⋯O = 160°].  相似文献   

8.
Chemical preparation, crystal structure, thermal analysis, IR absorption, and NMR studies are given for a new hybrid organic-inorganic compound, the (2,6-dimethyanilinium) dihydrogenophosphate monohydrate [C 8 H 12 N]H 2 PO 4 ·H 2 O. This compound crystallizes in a triclinic P=1 unit-cell, with a = 7.392(5) Å, b = 8.323(3) Å, c = 10.306(5) Å, α = 95.769 (4)°, β = 102.642 (3)°, γ = 113.498(2)°, V = 554.88(5) Å 3 , and Z = 2. Its crystal structure is determined and refined to R = 0.040 with 1942 independent reflections. The atomic arrangement can be described by inorganic layers built by H 2 PO 4 ? anions, and H 2 O molecules with which the organic molecules perform different interactions to form a stable 3D network. Solid state 31 P and 13 C CP-MAS-NMR spectroscopies are in agreement with the X-ray structure.  相似文献   

9.
Syntheses of the sky blue complex compounds [Ni(H2O)3(phen)(C5H6O4)] · H2O ( 1 ) and [Ni(H2O)2(phen)(C5H6O4)] ( 2 ) were carried out by the reactions of 1,10‐phenanthroline monohydrate, glutaric acid, NiSO4 · 6 H2O and Na2CO3 in CH3OH/H2O at pH = 6.9 and 7.5, respectively. The crystal structure of 1 (P 1 (no. 2), a = 14.289 Å, b = 15.182 Å, c = 15.913 Å, α = 67.108°, β = 87.27°, γ = 68.216°, V = 2934.2 Å3, Z = 2) consists of hydrogen bonded [Ni(H2O)3‐ (phen)(C5H6O4)]2 dimers and H2O molecules. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, three water O atoms and one carboxyl O atom from one monodentate glutarato ligand (d(Ni–N) = 2.086, 2.090 Å; d(Ni–O) = 2.064–2.079 Å). Through the π‐π stacking interactions and intermolecular hydrogen bonds, the dimers are assembled to form 2 D layers parallel to (0 1 1). The crystal structure of 2 (P21/n (no. 14), a = 7.574 Å, b = 11.938 Å, c = 18.817 Å, β = 98.48°, V = 1682.8 Å3, Z = 4) contains [Ni(H2O)2(phen)(C5H6O4)2/2] supramolecular chains extending along [010]. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, two water O atoms and two carboxyl O atoms from different bis‐monodentate glutarato ligands with d(Ni–N) = 2.082, 2.105 Å and d(Ni–O) = 2.059–2.087 Å. The supramolecular chains are assembled into a 3 D network by π‐π stacking interactions and interchain hydrogen bonds. A TG/DTA of 2 shows two endothermic effects at 132 °C and 390 °C corresponding to the complete dehydration and the lost of phen.  相似文献   

10.
A new zinc phosphite with the formula Zn3(tren)(HPO3)3·xH2O (x≈0.5) has been synthesized under hydrothermal conditions and characterized by FTIR, elemental analysis, powder X‐ray diffraction, single‐crystal X‐ray diffraction, thermogravimetric analysis and its fluorescent spectrum. The compound crystallizes in the triclinic system, space group (No.2), a = 10.1188(9) Å, b = 10.4194(9) Å, c = 10.5176(9) Å, α = 60.763(2)°, β = 70.6150(10)°, γ = 80.725(2)°, V = 912.77(14) Å3, Z = 2. The structure consists of double crankshaft chains, which are linked by Zn‐O‐P bonds to form 8‐ and 12‐membered channels along the [100] direction. The claw‐like Zn‐centered complexes of Zn(N4C6H18) as the supported templates, hang into the 12‐MR channels through Zn‐O‐P linkages with framework.  相似文献   

11.
A variety of [Ru(CO)2L(η4enone)] complexes (L = phosphines, phosphites, and arsines, enone = (E)-4-phenylbut-3-en-2-one) have been synthesized. 1H-, 13C-, and 31P-NMR spectra are reported and the X-ray structures of two Ru complexes with L ? Ph3P(7), Et3P ( 10 ) and one Fe complex with L ? Ph3P ( 14 ) are presented. All three compounds crystallize in the same monoclinic space group P21/n with a = 10.575(2) Å, b =9.213(2) Å, and c = 27.608(5) Å, β = 100.04(2)°, Z = 4 for 7 , a = 10.276(3) Å, b = 12.935(3) Å, and c = 14.854(2) Å, β = 96.96(2)°, Z = 4 for 10 , and a = 10.492(2) Å, b = 9.232(3) Å, and c = 27.129(3) Å, β = 98.67(2)°, Z = 4 for 14 . The structures of the Ru complexes are compared with the Fe analogues. In the case of M ? Ru and L ? (EtO)3P, (MeO)3P, and (i-PrO)3P ( 9 , 11 , and 13 , respectively) stereoisomers could be detected by 31P-NMR at room temperature, wich arise from rotation at the coordinated metal centre.  相似文献   

12.
Three 3, 5‐dimethylpyrazole (pz*) copper(II) complexes, [Cu(pz*)4(H2O)](ClO4)2 ( 1 ), [Cu(pz*)2(NCS)2]·H2O ( 2 ), and [Cu(pz*)2(OOCCH=CHCOO)(H2O)]·1.5H2O ( 3 ), have been synthesized and characterized with single crystal X‐ray structure analysis. 1 crystallizes in the tetragonal space group, 14/m, with a = 14.027 (3) Å, c = 16.301 (5) Å, and Z = 4. 2 crystallizes in the monoclinic space group, P21/c, with a = 8.008 (3) Å, b = 27.139 (9) Å, c = 8.934 (3) Å, β = 106.345 (6)°, and Z = 4. 3 crystallizes in the triclinic space group, P1¯, with a = 7.291 (9) Å, b = 10.891 (13) Å, c = 11.822 (14) Å, α = 80.90 (2)°, β = 79.73(2)°, γ = 70.60(2)°, and Z = 2. In 1 , one water molecule and four pz* ligands are coordinated to CuII. Two [Cu(pz*)4(H2O)]2+ units are connected to ClO4 via hydrogen bonds. One lattice water molecule is found in the unit cell of 2 , which forms an one‐dimensional chain via intermolecular hydrogen bonds with the N‐H atom of pz*. In 3 , the oxygen atom of the coordinated water molecule is connected with two C=O groups of two neighbouring maleic acid molecules to form a linear parallelogram structure. Another C=O group of maleic acid forms a hydrogen bond with the N‐H atom of pz* to create a two‐dimensional structure. The spectroscopic and bond properties are also discussed.  相似文献   

13.
Alcoholysis of [Fe2(OtBu)6] as a Simple Route to New Iron(III)‐Alkoxo Compounds: Synthesis and Crystal Structures of [Fe2(OtAmyl)6], [Fe5OCl(OiPr)12], [Fe5O(OiPr)13], [Fe5O(OiBu)13], [Fe5O(OCH2CF3)13], [Fe5O(OnPr)13], and [Fe9O3(OnPr)21] · nPrOH New alkoxo‐iron compounds can be synthesized easily by alcoholysis of [Fe2(OtBu)6] ( 1 ). Due to different bulkyness of the alcohols used, three different structure types are formed: [Fe2(OR)6], [Fe5O(OR)13] and [Fe9O3(OR)21] · ROH. We report synthesis and crystal structures of the compounds [Fe5OCl(OiPr)12] ( 2 ), [Fe2(OtAmyl)6] ( 3 ), [Fe5O(OiPr)13] ( 4 ), [Fe5O(OiBu)13] ( 5 ), [Fe5O(OCH2CF3)13] ( 6 ), [Fe9O3(OnPr)21] · nPrOH ( 7 ) and [Fe5O(OnPr)13] ( 8 ). Crystallographic Data: 2 , tetragonal, P 4/n, a = 16.070(5) Å, c = 9.831(5) Å, V = 2539(2) Å3, Z = 2, dc = 1.360 gcm?3, R1 = 0.0636; 3 , monoclinic, P 21/c, a = 10.591(5) Å, b = 10.654(4) Å, c = 16.740(7) Å, β = 104.87(2)°, V = 1826(2) Å3, Z = 2, dc = 1.154 gcm?3, R1 = 0.0756; 4 , triclinic, , a = 20.640(3) Å, b = 21.383(3) Å, c = 21.537(3) Å, α = 82.37(1)°, β = 73.15(1)°, γ = 61.75(1)°, V = 8013(2) Å3, Z = 6, dc = 1.322 gcm?3, R1 = 0.0412; 5 , tetragonal, P 4cc, a = 13.612(5) Å, c = 36.853(5) Å, V = 6828(4) Å3, Z = 4, dc = 1.079 gcm?3, R1 = 0.0609; 6 , triclinic, , a = 12.039(2) Å, b = 12.673(3) Å, c = 19.600(4) Å, α = 93.60(1)°, β = 97.02(1)°, γ = 117.83(1)°, V = 2600(2) Å3, Z = 2, dc = 2.022 gcm?3, R1 = 0.0585; 7 , triclinic, , a = 12.989(3) Å, b = 16.750(4) Å, c = 21.644(5) Å, α = 84.69(1)°, β = 86.20(1)°, γ = 77.68(1)°, V = 4576(2) Å3, Z = 2, dc = 1.344 gcm?3, R1 = 0.0778; 8 , triclinic, , a = 12.597(5) Å, b = 12.764(5) Å, c = 16.727(7) Å, α = 91.94(1)°, β = 95.61(1)°, γ = 93.24(2)°, V = 2670(2) Å3, Z = 2, dc = 1.323 gcm?3, R1 = 0.0594.  相似文献   

14.
Two new glutarato bridged coordination polymers {[Mn(phen)]2(C5H6O4)4/2} ( 1 ) and {[Zn(phen)(H2O)](C5H6O4)2/2}· H2O ( 2 ) were structurally characterized on the basis of single crystal X‐ray diffraction data. Crystal data: ( 1 ) P2/c (no. 13), a = 10.340(2)Å, b = 10.525(2)Å, c = 13.891(2)Å, β = 98.31(1)°, U = 1495.9(5)Å3, Z = 2; ( 2 ) P21/n (no. 14), a = 6.738(1)Å, b = 25.636(3)Å, c = 10.374(1)Å, β = 106.13(1)°, U = 1721.4(4)Å3, Z = 4. Complex 1 consists of 1D ribbon‐like {[Mn(phen)]2(C5H6O4)4/2} chains, in which the [Mn(phen)] units were interlinked by glutarato ligands to generate 8‐ and 16‐membered rings. The Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms of three glutarato ligands with d(Mn‐N) = 2.270, 2.276Å, d(Mn‐O) = 2.114—2.283Å. Through the interchain π‐π stacking interactions, the 1D chains are assembled into 2D puckered layers, which are further held together by interlayer π‐π stacking interactions into a 3D network. Complex 2 is built up by 1D {[Zn(phen)(H2O)](C5H6O4)2/2} linear chains and hydrogen bonded H2O molecules. The Zn atoms are coordinated by two N atoms of one phen ligand and three O atoms of one H2O molecule and two glutarato ligands to form slightly elongated trigonal bipyramids with the water O atom and one phen N atom at the apical positions (d(Zn‐N) = 2.101, 2.168Å, d(Zn‐O) = 1.991—2.170Å). The 1D linear chains result from [Zn(phen)(H2O)] units bridged by bis‐monodentate glutarato ligands. The resulting 1D chains are assembled by π‐π stacking interactions into 2D layers, between which the hydrogen bonded H2O molecules are situated.  相似文献   

15.
The crystal structure of the title compound, [MnCl(C28H22N2O2)(C2H6O)], has been determined at 173 (2) K in the non‐centrosymmetric space group P212121. The asymmetric unit contains two molecular units. An intermolecular O—H⋯Cl hydrogen bond is formed between the OH group of an ethanol mol­ecule coordinated to the Mn atom and the coordinated Cl anion, and so polymeric chains of Mn‐containing fragments are formed [O—H⋯Cl = 3.1281 (16) and 3.1282 (15) Å]. The Mn atoms have a pseudo‐octahedral coordination sphere, with the four donor atoms of the Schiff base forming an equatorial plane [Mn—O distances are 1.8740 (13), 1.8717 (13), 1.8749 (13) and 1.8823 (13) Å, and Mn—N distances are 1.9868 (15), 1.9910 (14), 1.9828 (15) and 1.9979 (14) Å]. The axial positions are occupied by an ethanol mol­ecule [Mn—O distances of 2.3069 (15) and 2.3130 (15) Å] and a Cl ligand [Mn—Cl distances of 2.5732 (6) and 2.5509 (6) Å].  相似文献   

16.
The title compound, {[Co(C8H7NO2)2(H2O)2](NO3)2}n, is the first d‐metal ion complex involving bidentate bridging of a β‐dialdehyde group. The Co2+ ion is situated on an inversion centre and adopts an octahedral coordination with four equatorial aldehyde O atoms [Co—O = 2.0910 (14) and 2.1083 (14) Å] and two axial aqua ligands [Co—O = 2.0631 (13) Å]. The title compound has a two‐dimensional square‐grid framework structure supported by propane‐1,3‐dionate O:O′‐bridges between the metal ions. The organic ligand itself possesses a zwitterionic structure, involving conjugated anionic propane‐1,3‐dionate and cationic pyridinium fragments. Hydrogen bonding between coordinated water molecules, the pyridinium NH group and the nitrate anions [O...O = 2.749 (2) and 2.766 (3) Å, and N...O = 2.864 (3) Å] is essential for the crystal packing.  相似文献   

17.
The synthesis of pharmaceutical cocrystals is a strategy to enhance the performance of active pharmaceutical ingredients (APIs) without affecting their therapeutic efficiency. The 1:1 pharmaceutical cocrystal of the antituberculosis drug pyrazinamide (PZA) and the cocrystal former p‐aminobenzoic acid (p‐ABA), C7H7NO2·C5H5N3O, (1), was synthesized successfully and characterized by relevant solid‐state characterization methods. The cocrystal crystallizes in the monoclinic space group P21/n containing one molecule of each component. Both molecules associate via intermolecular O—H...O and N—H...O hydrogen bonds [O...O = 2.6102 (15) Å and O—H...O = 168.3 (19)°; N...O = 2.9259 (18) Å and N—H...O = 167.7 (16)°] to generate a dimeric acid–amide synthon. Neighbouring dimers are linked centrosymmetrically through N—H...O interactions [N...O = 3.1201 (18) Å and N—H...O = 136.9 (14)°] to form a tetrameric assembly supplemented by C—H...N interactions [C...N = 3.5277 (19) Å and C—H...N = 147°]. Linking of these tetrameric assemblies through N—H...O [N...O = 3.3026 (19) Å and N—H...O = 143.1 (17)°], N—H...N [N...N = 3.221 (2) Å and N—H...N = 177.9 (17)°] and C—H...O [C...O = 3.5354 (18) Å and C—H...O = 152°] interactions creates the two‐dimensional packing. Recrystallization of the cocrystals from the molten state revealed the formation of 4‐(pyrazine‐2‐carboxamido)benzoic acid, C12H9N3O3, (2), through a transamidation reaction between PZA and p‐ABA. Carboxamide (2) crystallizes in the triclinic space group P with one molecule in the asymmetric unit. Molecules of (2) form a centrosymmetric dimeric homosynthon through an acid–acid O—H...O hydrogen bond [O...O = 2.666 (3) Å and O—H...O = 178 (4)°]. Neighbouring assemblies are connected centrosymmetrically via a C—H...N interaction [C...N = 3.365 (3) Å and C—H...N = 142°] engaging the pyrazine groups to generate a linear chain. Adjacent chains are connected loosely via C—H...O interactions [C...O = 3.212 (3) Å and C—H...O = 149°] to generate a two‐dimensional sheet structure. Closely associated two‐dimensional sheets in both compounds are stacked via aromatic π‐stacking interactions engaging the pyrazine and benzene rings to create a three‐dimensional multi‐stack structure.  相似文献   

18.
(Di­phenyl phosphite‐κO)(5,10,15,20‐tetra­phenyl­porphyrinato‐κ4N)­manganese(III) hexa­fluoro­antimonate(V), [Mn(C44H28N4)(C12H11O3P)](SbF6), is the first example of a structurally characterized di­aryl or di­alkyl phosphite complex of a metal–porphyrin ion. The axial phosphite ligand binds to the MnIII ion via the P=O O atom, affording a nominally five‐coordinate complex with an Mn—O distance of 2.120 (4) Å. The mean porphyrin Mn—N distance is 2.000 (4) Å and the MnIII ion is displaced from the 24‐atom porphyrin mean plane by 0.1548 (13) Å towards the axial O atom. The porphyrin adopts a marked saddle conformation, with a small domed component. The saddle distortion of the porphyrin ligand reflects the tight back‐to‐back dimers formed in the lattice by pairs of neighboring cations. The `non‐covalent' dimers in the lattice exhibit an unusual (weak) η2‐type coordination of a pyrrole C=C bond from a neighboring mol­ecule, with MnIII⃛C distances of 3.697 (5) and 3.537 (5) Å.  相似文献   

19.
The crystal structure of [Mn(HIDA)2(H2O)2] (Tetragonal, P4¯21c (no.114), a = b = 8.10(2)Å, c = 9.605(3)Å, α = β = γ = 90°, Z = 2, R = 0.051, wR2 = 0.123 for 460 observed reflections) consists of infinite acentric 2D square grids with HIDA ions as bridging ligands. The 2D grids are interlocked(along the c axis) by hydrogen bonding. The Mn atoms are octahedrally coordinated by four O atoms of four HIDA ions (d(Mn—O)= 2.183(4)Å ) and two O atoms of two water molecules (d(Mn—OW) = 2.154(5)Å ). The results show that this acentric coordination polymer exhibits strong powder second harmonic generation (SHG) efficiency, ca. 1.9 times that of potassium dihydrogen phosphate, and remarkable thermal stability.  相似文献   

20.
1H- and 13C-NMR. data are reported for the complexes [Pt (1) L] and [Pt (2) L]; 1 = OC6H4CH ? NCH2CH2O, 2 = OC6H4CH ? NC6H4O; L = PR3, AsR3, C ? N (cyclohexyl), DMSO, pyridine, secondary amine. The molecular structures of [Pt (2) (NHEt2)] (I) and [Pt (2) (PPh3)] (II) have been determined by X-ray analysis. Relevant bond distances for I: Pt-N (amine) = 2.076 Å, Pt-N (imine) = 2.017 Å, Pt-O = 1.992 Å and 2.002 Å; for II: Pt-P = 2.248 Å, Pt-N = 2.064 Å, Pt-O = 1.964 and 2.005 Å. Both the solid and solution state data are interpreted in terms of differences in the trans influence of the ligand L. The question of metal-ligand d-p π back bonding to the imine is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号