首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
AnOV is a π‐conjugated radical built from an anthracene (An) unit linked by a p‐phenylene to an oxoverdazyl (OV) moiety. The mono‐oxidized (cationic) form of AnOV was generated both electrochemically and photochemically (in the presence of an electron acceptor). The triplet nature (S=1) of the electronic ground state of AnOV + was demonstrated by combining spectroelectrochemistry, electron‐spin resonance (ESR) experiments, and ab initio molecular orbital (MO) calculations. The intramolecular spin alignment (ISA) within AnOV + results from the ferromagnetic coupling (Jelectrochem>0) of the two unpaired electrons located on the oxidized electron donor (An+) and on the pendant OV radical. The spin‐density distribution pattern of AnOV + is akin to that of AnOV when photopromoted ( AnOV *) to its high‐spin (HS) lowest excited quartet (S=3/2) state. This high‐spin state results from the ferromagnetic coupling (Jphotophys>0) of the triplet locally excited state of An (3An*) with the doublet ground state of OV. As a shared salient feature, AnOV + and AnOV * (HS) show a spin delocalization within the domain of activated An in either An+ or 3An* (nexus states) forms. The present study essentially contributes to establish and clarify relationships between electrochemical, photophysical, and photochemical pathways to achieve ISA processes within AnOV . In particular, we discuss the impact of the spin polarization of the unpaired electron of OV on electronic features of the An electron‐donating subunit. Close analysis of this polarizing interplay allows one to derive a novel functional paradigm to manipulate electron spins at the intramolecular level with light and under an external magnetic field. Indeed, two original functional elements are identified: light‐triggered donors of spin‐polarized electrons and spin‐selective electron acceptors, which are of potential interest for molecular spintronics.  相似文献   

2.
Ab initio all‐electron computations have been carried out for Ce+ and CeF, including the electron correlation, scalar relativistic, and spin–orbit coupling effects in a quantitative manner. First, the n‐electron valence state second‐order multireference perturbation theory (NEVPT2) and spin–orbit configuration interaction (SOCI) based on the state‐averaged restricted active space multiconfigurational self‐consistent field (SA‐RASSCF) and state‐averaged complete active space multiconfigurational self‐consistent field (SA‐CASSCF) wavefunctions have been applied to evaluations of the low‐lying energy levels of Ce+ with [Xe]4f15d16s1 and [Xe]4f15d2 configurations, to test the accuracy of several all‐electron relativistic basis sets. It is shown that the mixing of quartet and doublet states is essential to reproduce the excitation energies. Then, SA‐RASSCF(CASSCF)/NEVPT2 + SOCI computations with the Sapporo(‐DKH3)‐2012‐QZP basis set were carried out to determine the energy levels of the low‐lying electronic states of CeF. The calculated excitation energies, bond length, and vibrational frequency are shown to be in good agreement with the available experimental data. © 2018 Wiley Periodicals, Inc.  相似文献   

3.
Spin‐dependent effects in complex formation reactions of the ethylene molecule with palladium and platinum atoms were studied by electron correlation calculations with account of spin–orbit coupling. Simple correlation diagrams illustrating spin‐uncoupling mechanisms were obtained, showing that the low spin state of the transition‐metal atom or the transition‐metal atom complex is always more reactive than are the high spin states because of the involvement of the triplet excited molecule in the chemical activation. Spin–orbit coupling calculations of the reaction between a platinum atom and ethylene explain the high‐spin Pt(3D) reactivity as due to an effective spin flip at the stage of the weak triplet complex formation. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 581–596, 1999  相似文献   

4.
The generalized relativistic effective core potential (GRECP) approach is employed in the framework of multireference single‐ and double‐excitation configuration interaction (MRD‐CI) method to calculate the spin‐orbit splitting in the 2Po ground state of the Tl atom and spectroscopic constants for the 0+ ground state of TlH. The 21‐electron GRECP for Tl is used, and the outer core 5s and 5p pseudospinors are frozen with the help of the level shift technique. The spin‐orbit selection scheme with respect to relativistic multireference states and the corresponding code are developed and applied in the calculations. In this procedure both correlation and spin‐orbit interactions are taken into account. A [4,4,4,3,2] basis set is optimized for the Tl atom and employed in the TlH calculations. Very good agreement is found for the equilibrium distance, vibrational frequency, and dissociation energy of the TlH ground state (Re=1.870 Å, ωe=1420 cm−1, De=2.049 eV) as compared with the experimental data (Re=1.872 Å, ωe=1391 cm−1, De=2.06 eV). © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 409–421, 2001  相似文献   

5.
6.
In the present work the semiempirical effective crystal field (ECF) method previously designed for electronic structure calculations of transition metal complexes and utilizing non‐Hartree–Fock trial wave function and parameterized for complexes of doubly charged Cr2+, V2+, Mn2+, Fe2+, Co2+, and Ni2+ cations is extended to complexes of triply charged cations of 3d‐elements. With the parameters adjusted the ECF method is applied to calculations of ground states and low‐energy spectra of the d‐shells of fluoro‐, chloro‐, aqua‐, amino‐, and cyano‐complexes of the triply charged cations. Obtained total spin and symmetry of the ground states match the experimentally observed ones. Satisfactory agreement between the calculated and experimental d‐shell electronic transition energies is achieved as well. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

7.
ZINDO/S calculations on cis‐Ru(4,4′‐dicarboxy‐2,2′‐bipyridine)2(X)2 and cis‐Ru(5,5′‐dicarboxy‐2,2′‐bipyridine)2(X)2 complexes where X = Cl?, CN?, and NCS? reveal that the highest occupied molecular orbital (HOMO) of these complexes has a large amplitude on both the nonchromophoric ligand X and the central ruthenium atom. The lowest‐energy metal to ligand charge transfer (MLCT) transition in these complexes involves electron transfer from ruthenium as well as the halide/pseudohalide ligand to the polypyridyl ligand. The contribution of the halide/pseudohalide ligand(X) to the HOMO affects the total amount of charge transferred to the polypyridyl ligand and hence the photoconversion efficiency. The virtual orbitals involved in the second MLCT transition in 4,4′‐dicarboxy‐2,2′‐bipyridine complexes have higher electron density on the ? COOH group compared to the lowest unoccupied molecular orbital and hence a stronger electronic coupling with the TiO2 surface and higher injection efficiency at shorter wavelengths. In comparison, the virtual orbitals involved in the second MLCT transition in 5,5′‐dicarboxy‐2,2′‐bipyridine complexes have lesser electron density on the ? COOH group, leading to a weaker electronic coupling with the TiO2 surface and therefore lower efficiency for electron injection at shorter wavelengths for these complexes. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

8.
A novel superatom species with 20‐electron system, SixGeyM+ (x + y = 4; M = Nb, Ta), was properly proposed. The trigonal bipyramid structures for the studied systems were identified as the putative global minimum by means of the density functional theory calculations. The high chemical stability can be explained by the strong p‐d hybridization between transition metal and mixed Si‐Ge tetramers, and closed‐shell valence electron configuration [1S21P62S21D10]. Meanwhile, the chemical bondings between metal atom and the tetramers can be recognized by three localized two‐center two‐electron (2c‐2e) and delocalized 3c‐2e σ‐bonds. For all the doped structures studied here, it was found that the π‐ and σ‐electrons satisfy the 2(N + 1)2 counting rule, and thus these clusters possess spherically double (π and σ) aromaticity, which is also confirmed by the negative nucleus‐independent chemical shifts values. Consequently, all the calculated results provide a further understanding for structural stabilities and electronic properties of transition metal‐doped semiconductor clusters. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
The high pressure behaviour of InI is studied by DFT‐calculations and compared with experimental data. The existence of a 5s2 electron pair in In+ represents an unfavourable bonding situation for high symmetry structures because of effective closed shell repulsion. Since cations with a ns2 electron pair are highly polarizable and the electronic situation is more favourable in the low symmetry structure InI prefers a TlI‐type structure at ambient pressure. A pressure induced transition to the more densely packed high symmetry CsCl‐type structure takes place at about 19 GPa according to our calculations. At ambient pressure the interactions are predominantly ionic. However with increasing pressure the distances between In+ cations in the TlI‐type structure diminish drastically, mainly due to the changing space requirement of the lone electron pair. Apart from ionic interactions further bonding interactions between the In+ cations occur. At elevated pressure the electron localization function (ELF) as well as the band structure diagrams suggest metallic bonding between the In+ within the zigzag chain, i. e. increasing bonding interactions between the In+ cations due to the electron pair and its s‐p‐mixing. At ambient pressure In‐In interactions are rather weak and the space requirement of the lone electron pair mainly determines the characteristic arrangement of the ions. At elevated pressure the In‐In interactions become stronger and stabilise themselves additionally the specific structural arrangement.  相似文献   

10.
The complex series [Ru(pap)(Q)2]n ([ 1 ]n–[ 4 ]n; n=+2, +1, 0, ?1, ?2) contains four redox non‐innocent entities: one ruthenium ion, 2‐phenylazopyridine (pap), and two o‐iminoquinone moieties, Q=3,5‐di‐tert‐butyl‐N‐aryl‐1,2‐benzoquinonemonoimine (aryl=C6H5 ( 1+ ); m‐(Cl)2C6H3 ( 2+ ); m‐(OCH3)2C6H3 ( 3+ ); m‐(tBu)2C6H3 ( 4 +)). A crystal structure determination of the representative compound, [ 1 ]ClO4, established the crystallization of the ctt‐isomeric form, that is, cis and trans with respect to the mutual orientations of O and N donors of two Q ligands, and the coordinating azo N atom trans to the O donor of Q. The sensitive C? O (average: 1.299(3) Å), C? N (average: 1.346(4) Å) and intra‐ring C? C (meta; average: 1.373(4) Å) bond lengths of the coordinated iminoquinone moieties in corroboration with the N?N length (1.292(3) Å) of pap in 1 + establish [RuIII(pap0)(Q.?)2]+ as the most appropriate electronic structural form. The coupling of three spins from one low‐spin ruthenium(III) (t2g5) and two Q.? radicals in 1 +– 4 + gives a ground state with one unpaired electron on Q.?, as evident from g=1.995 radical‐type EPR signals for 1 +– 4 +. Accordingly, the DFT‐calculated Mulliken spin densities of 1 + (1.152 for two Q, Ru: ?0.179, pap: 0.031) confirm Q‐based spin. Complex ions 1 +– 4 + exhibit two near‐IR absorption bands at about λ=2000 and 920 nm in addition to intense multiple transitions covering the visible to UV regions; compounds [ 1 ]ClO4–[ 4 ]ClO4 undergo one oxidation and three separate reduction processes within ±2.0 V versus SCE. The crystal structure of the neutral (one‐electron reduced) state ( 2 ) was determined to show metal‐based reduction and an EPR signal at g=1.996. The electronic transitions of the complexes 1 n– 4 n (n=+2, +1, 0, ?1, ?2) in the UV, visible, and NIR regions, as determined by using spectroelectrochemistry, have been analyzed by TD‐DFT calculations and reveal significant low‐energy absorbance (λmax>1000 nm) for cations, anions, and neutral forms. The experimental studies in combination with DFT calculations suggest the dominant valence configurations of 1 n– 4 n in the accessible redox states to be [RuIII(pap0)(Q.?)(Q0)]2+ ( 1 2+– 4 2+)→[RuIII(pap0)(Q.?)2]+ ( 1 +– 4 +)→[RuII(pap0)(Q.?)2] ( 1 – 4 )→[RuII(pap.?)(Q.?)2]? ( 1 ?– 4 ?)→[RuIII(pap.?)(Q2?)2]2? ( 1 2?– 4 2?).  相似文献   

11.
《中国化学》2017,35(7):1170-1178
Diruthenium ethynyl complexes 1 – 3 ( 1 : 1,5‐dithia‐s‐indacene‐4,8‐dione; 2 : 4,8‐diethoxybenzo[1,2‐b:4,5‐ b']dithiophene; 3 : 4,8‐didodecyloxybenzo[1,2‐b:4,5‐b']dithiophene) have been synthesized by incorporating the respective conjugated heterocyclic spacer and characterized by NMR and elemental analysis. The effects of bridge ligands’ properties on electronic coupling between redox‐active ruthenium terminal groups were investigated by electrochemistry, UV /vis/near‐IR and IR spectroelectrochemistry combined with density functional theory (DFT ) and time‐dependent DFT calculations. Electrochemistry results indicated that complexes 1 – 3 exhibit two fully reversible oxidation waves, and complexes 2 and 3 with electron‐rich and π‐conjuagted bridge ligands are characterized by excellent electrochemical properties. Furthermore, the larger ν(C ≡ C) separation from the IR spectroelectrochemical results of 2 and 3 and the intense NIR absorption features of singly oxidized species 2 + and 3 + revealed that their molecular skeletons have superior abilities to delocalize the positive charge. The spin density distribution from DFT calculations proved the conclusions of this study.  相似文献   

12.
The redox and spin versatilities of manganese–porphyrin complexes [MnIIP] are examined to construct a redox‐switchable device. The electronic structure of [MnIIIP]+ was analyzed by using wavefunction‐based calculations (complete active spaces plus single excitations on top of the active spaces, that is, CAS+singles). A non‐negligible σ‐type electron‐transfer configuration is present in the [MnIIIP]+ S=2 ground state. By contrast, the [MnIIP.]+ valence tautomer is a purely π‐type intramolecular charge transfer, thus reflecting an S=3 spin state as a result of the strong ferromagnetic interaction (J=30 meV) between the S=5/2 MnII ion and the S=1/2 porphyrin radical cation P.+. The change of the redox‐sensitive site in the valence tautomer leads to a ‘triangular scheme’ that involves a critical step in which a simultaneous electron transfer and spin change are expected to induce bistability. From the wavefunction inspection, a meso‐substituted porphyrin candidate was designed to support this scenario. The complete active‐space second‐order perturbation theory (CASPT2) adiabatic energy difference between the S=2 and the S=3 spin states was reduced down to 0.15 eV, thereby giving rise to a metastable S=3 state characterized by a 0.10 Å extension of the porphyrin cavity radius. These results not only confirm the rather versatile nature of these inorganic systems but also demonstrate that redox and spin changes are intermingled in this class of compounds and can be used for applied devices.  相似文献   

13.
We studied the energy spectrum of the 1‐D extended Hubbard model with spin‐dependent hopping and related spin ladder system formed by two coupled XXZ spin 1/2 chains with the interchain interaction of Ising type. It was proved that the model excitation spectrum has no gap excepting some special values of z‐projection of the ground‐state total spin. The thorough analytic consideration of two‐magnon states was given. The existence up to five bound states at specified value of quasimomentum of the pair of inverted spins was shown. We also present the results of density matrix renormalization group calculations that showed nonadequacy of the pair approximation for n‐magnon bound states of the extended model with the strong electron–electron interactions. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

14.
A new perturbation approach is proposed that enhances the low‐order, perturbative convergence by modifying the zeroth‐order Hamiltonian in a manner that enlarges any small‐energy denominators that may otherwise appear in the perturbative expansion. This intruder state avoidance (ISA) method can be used in conjunction with any perturbative approach, but is most applicable to cases where small energy denominators arise from orthogonal‐space states—so‐called intruder states—that should, under normal circumstances, make a negligible contribution to the target state of interests. This ISA method is used with multireference Møller–Plesset (MRMP) perturbation theory on potential energy curves that are otherwise plagued by singularities when treated with (conventional) MRMP; calculation are performed on the 13Σ state of O2; and the 21Δ, 31Δ, 23Δ, and 33Δ states of AgH. This approach is also applied to other calculations where MRMP is influenced by intruder states; calculations are performed on the 3Πu state of N2, the 3Π state of CO, and the 21A′ state of formamide. A number of calculations are also performed to illustrate that this approach has little or no effect on MRMP when intruder states are not present in perturbative calculations; vertical excitation energies are computed for the low‐lying states of N2, C2, CO, formamide, and benzene; the adiabatic 1A13B1 energy separation in CH2, and the spectroscopic parameters of O2 are also calculated. Vertical excitation energies are also performed on the Q and B bands states of free‐base, chlorin, and zinc–chlorin porphyrin, where somewhat larger couplings exists, and—as anticipated—a larger deviation is found between MRMP and ISA‐MRMP. © 2002 Wiley Periodicals, Inc. J Comput Chem 10: 957–965, 2002  相似文献   

15.
The correlation calculation of the electronic structure of PbH is carried out with the generalized relativistic effective core potential (GRECP) and multireference single‐ and double‐excitation configuration interaction (MRD‐CI) methods. The 22‐electron GRECP for Pb is used and the outer core 5s, 5p, and 5d pseudospinors are frozen using the level‐shift technique, so only five external electrons of PbH are correlated. A new configuration selection scheme with respect to the relativistic multireference states is employed in the framework of the MRD‐CI method. The [6, 4, 3, 2] correlation spin–orbit basis set is optimized in the coupled cluster calculations on the Pb atom using a recently proposed procedure, in which functions in the spin–orbital basis set are generated from calculations of different ionic states of the Pb atom and those functions are considered optimal that provide the stationary point for some energy functional. Spectroscopic constants for the two lowest‐lying electronic states of PbH (2Π1/2, 2Π3/2) are found to be in good agreement with the experimental data. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

16.
We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin‐orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree–Fock (CAHF) algorithm for the determination of 4f quasi‐atomic active orbitals common to all multi‐electron spin manifolds contributing to the ground spin‐orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi‐Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem‐specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state–of–the–art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres , represents a more time‐efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non‐perturbative spin‐orbit coupling effects. © 2017 Wiley Periodicals, Inc.  相似文献   

17.
The density functional theory (DFT) and the complete active space self‐consistent‐field (CASSCF) method have been used for full geometry optimization of carbon chains C2nH+ (n = 1–5) in their ground states and selected excited states, respectively. Calculations show that C2nH+ (n = 1–5) have stable linear structures with the ground state of X3Π for C2H+ or X3Σ? for other species. The excited‐state properties of C2nH+ have been investigated by the multiconfigurational second‐order perturbation theory (CASPT2), and predicted vertical excitation energies show good agreement with the available experimental values. On the basis of our calculations, the unsolved observed bands in previous experiments have been interpreted. CASSCF/CASPT2 calculations also have been used to explore the vertical emission energy of selected low‐lying states in C2nH+ (n = 1–5). Present results indicate that the predicted vertical excitation and emission energies of C2nH+ have similar size dependences, and they gradually decrease as the chain size increases. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

18.
A new transition‐metal‐containing Zintl phase, Eu10Cd6Bi12, was synthesized by combining the elements in excess molten Cd. Single‐crystal X‐ray diffraction studies indicated that this compound crystallizes in the orthorhombic space group Cmmm (No. 65) with a=7.840(2), b=24.060(7), and c=4.7809(14) Å. The crystal structure of Eu10Cd6Bi12 can be viewed as a stacking of a series of [Cd6Bi12] double layers, which are arranged alternately along the b axial direction. The layers are composed of corner‐ and edge‐shared CdBi4 tetrahedra, a common feature in the crystal chemistry of many transition‐metal Zintl phases. Electronic‐band‐structure calculations confirm the closed‐shell configuration of all constituent elements and corroborate the electron count inferred by the Zintl formalism, that is, [Eu2+]10[Cd2+]6[Bi3?]8[Bi2?]4. Magnetic‐susceptibility measurements confirm the divalency of europium and show the existence of a long‐range antiferromagnetic order of the Eu spins below 12.3 K.  相似文献   

19.
The electronic characteristics of mixed‐valence complexes are often inferred from the shape of the inter‐valence charge transfer (IVCT) band, which usually falls in the near infrared (NIR) region, and relationships derived from Marcus‐Hush theory. These analyses typically assume one single, dominant molecular conformation. The NIR spectra of the prototypical delocalised (Class III Robin–Day mixed‐valence) complexes [{Ru(pp)Cp’}2(μ‐C≡C?C≡C)]+ ([ 1 ]+: Cp’=Cp, pp=(PPh3)2; [ 2 ]+: Cp’=Cp, pp=dppe; [ 3 ]+: Cp’=Cp*, pp=dppe) feature a ‘two‐band’ pattern, which complicates band‐shape analysis using these traditional methods. In the past, the appearance of sub‐bands within or near the IVCT transition has been attributed to vibronic effects or localised d‐d transitions. Quantum‐chemical modelling of a series of rotational conformers of [ 1 ]+–[ 3 ]+ reveals the two components that contribute to the NIR absorption band envelope to be a π‐π* transition and an MLCT transition. The MLCT components only gain appreciable intensity when the orientation of the half‐sandwich ruthenium ligand spheres deviates from idealised cis (Ω P?Ru?Ru?P=0°) or trans (Ω P?Ru?Ru?P=180°) conformations. The increased steric demand of the supporting ligands, together with some underlying inter‐phosphine ligand T‐shaped CH???π stacking interactions across the series [ 1 ]+ to [ 2 ]+ to [ 3 ]+ results in local minima biased towards such non‐idealised conformations of the metal‐ligand fragments (Ω P?Ru?Ru?P=33–153°). Experimentally, this is indicated by appearance of multiple bands within the IR (C≡C) band envelopes and increasing intensity of the higher‐energy MLCT transition(s) relative to the π‐π* transition across the series, and the appearance of a pronounced ‘two‐band’ pattern in the experimental NIR absorption envelopes. These conformational effects and the methods of analysis presented here, which combine analysis of IR and NIR spectra with quantum‐chemical calculations on a range of energetically similar conformational minima, are expected to be quite general for mixed‐valence systems.  相似文献   

20.
The structures and relative stabilities of high‐spin n+1Aun?1Ag and nAun?1Ag+ (n = 2–8) clusters have been studied with density functional calculation. We predicted the existence of a number of previously unknown isomers. Our results revealed that all structures of high‐spin neutral or cationic Aun?1Ag clusters can be understood as a substitution of an Au atom by an Ag atom in the high‐spin neutral or cationic Aun clusters. The properties of mixed gold–silver clusters are strongly sized and structural dependence. The high‐spin bimetallic clusters tend to be holding three‐dimensional geometry rather than planar form represented in their low‐spin situations. Silver atom prefers to occupy those peripheral positions until to n = 8 for high‐spin clusters, which is different from its position occupied by light atom in the low‐spin situations. Our theoretical calculations indicated that in various high‐spin Aun?1Ag neutral and cationic species, 5Au3Ag, 3AuAg and 5Au4Ag+ hold high stability, which can be explained by valence bond theory. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号