首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Liquid–liquid thermally induced phase separation of the polymer‐diluent system of poly(ethylene‐co‐vinyl alcohol) (EVOH)‐glycerol was examined under light scattering. For EVOH with an ethylene content of 38 mol % (EVOH38), maxima of the scattered light intensity were observed that indicated that phase separation occurred by the spinodal decomposition (SD). The growth of the structures formed by the general liquid–liquid phase separation obeyed a power‐law scaling relationship in SD. For EVOH with an ethylene content of 32 mol % (EVOH32), the liquid–liquid phase separation resulted from the polymer crystallization. In this case, the structure growth showed the characteristic behavior in which the crystalline particles were initially formed, and then the droplets formed by the liquid–liquid phase separation induced by the crystallization grew rapidly. Furthermore, the growth of the droplet by the phase separation was followed by an optical microscope measurement at a constant cooling rate. The phase‐separated structure formed after the crystallization can grow faster than that formed by the normal liquid–liquid phase separation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 194–201, 2003  相似文献   

2.
The phase‐separation kinetics of liquid‐crystalline polymer/flexible polymer blends was studied by the coupled time‐dependent Ginzberg–Landau equations for compositional order parameter ? and orientational order parameter Sij. The computer simulations of phase‐separated structures of the blends were performed by means of the cell dynamical system in two dimensions. The compositional ordering processes of phase separation are demonstrated by the time evolution of ?. The influence of orientational ordering on compositional ordering is discussed. The small‐angle light scattering patterns are numerically reproduced by means of the optical Fourier transformation of spatial variation of the polarizability tensor αij, and the azimuthal dependence of the scattering intensity distribution is interpreted. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2915–2921, 2001  相似文献   

3.
Small angle light scattering (SALS) and differential scanning calorimetry DSC have been applied to investigate the melting of spherulites isothermally crystallized polylactide. At an isothermal crystallization temperature high enough, pure α‐phase crystals are formed. Exposed to a temperature gradient, the crystals first melt and then recrystallize before they finally melt. With decreasing crystallization temperature, an increasing fraction of polylactide is crystallizing in the less stable α ‐phase. α ‐crystals also melt upon increasing the temperature but recrystallize to the more stable α‐phase. A constant spherulite size is revealed by SALS for both processes, the α/α and α /α melt‐recrystallization, until completion of the final melting, thereby supporting integrity of the spherulites throughout the entire processes. Joint DSC and SALS experiments demonstrate that the depolarized scattering invariant correlates with the heat flow recorded by DSC and thus offer an alternative measure for the degree of crystallinity. The following mechanism is identified for both processes: initial melting and recrystallization overlay each other. Crystallinity is not fully recovered upon recrystallization because only part of the original lamellae survives the melt‐recrystallization, though with an increased thickness. While lamellae are melting and reforming or simply transforming their phase, the spherulites survive the process until final melting. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1483–1495  相似文献   

4.
In this study, memory effect of mesomorphic isotactic polypropylene (iPP) was investigated using polarized optical microscope and small‐angle X‐ray scattering. Differing from classical memory effect, mesomorphic iPP melt had a higher growth rate and a higher memory temperature. The relative growth rate increased with increasing crystallization temperature. Lauritzen–Hoffman plots indicated that the increased growth rate arose from reduced surface nucleation barrier. The highest memory temperature was estimated to be 185 °C, which was close to the equilibrium melting point of iPP crystal. Additionally, Small‐angle X‐ray scattering measurements showed that a liquid crystal layer might exist between lamellar and amorphous layers. Based on above results, a crystallization model was proposed. In the mesomorphic iPP melt, there exist aggregates structurally similar to β phase except α‐phase crystal residuals, which cannot act as nucleation sites or transform to β crystal through surface nucleation. The only way for the aggregate is to transform to α crystal during crystal growth. The aggregate decreases the surface nucleation barrier and promotes the helical growth, leading to higher growth rate. Only when the aggregate relaxes to polymer coils through thickening at a higher temperature, can the memory effect be erased. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1573–1580  相似文献   

5.
The double melting behavior of a thermotropic liquid crystalline polyimide was studied by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), transmission electron microscopy (TEM), wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS). This liquid crystalline polyimide exhibited a normal melting peak around 278 °C and transformed into a smectic A phase. The smectic A phase changed to nematic phase upon heating to 298 °C, then became isotropic melt around 345 °C. The samples annealed or isothermally crystallized at lower temperature showed double melting endotherms during heating scan. The annealing‐induced melting endotherm was highly dependent on annealing conditions, whereas the normal melting endotherm was almost not influenced by annealing when the annealing temperature was low. Various possibilities for the lower melting endotherm are discussed. The equilibrium melting points of both melting peaks were extrapolated to be 283.2 °C. Combined analytical results showed that the double melting peaks were from the melting of the two types of crystallites generated from two crystallization processes: a slow and a fast one. Fast crystallization may start from the well‐aligned liquid crystal domains, whereas the slow one may be from the fringed or amorphous regions. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3018–3031, 2000  相似文献   

6.
The effect of shear flow on the structure of a phase‐separated, near‐critical blend of 50/50 (w/w) poly(styrene‐ran‐butadiene) and polybutadiene was studied with two different custom‐built rheo‐optical instruments that combined polymer melt flow and small‐angle light scattering (SALS). The deformation of the phase domains during shear flow was nonaffine, and the SALS patterns evolved from a spinodal ring (SR) pattern to a squashed SR with two high‐intensity lobes, to an H‐pattern, to a butterfly pattern with a dark streak along the equator, and finally to a steady‐state, elliptical pattern. The SALS patterns were explained in terms of a network model, in which the strands of the network first orient in the flow direction, then extend in this direction, and finally break up into droplets aligned in the flow direction. According to this picture, the strands in the vorticity direction do not deform until relatively high strains, after which the periodicity of the network begins to disappear. Supporting this model was the observation that the transitions between the different SALS patterns corresponded to inflections and/or maxima in the shear stress or first normal stress difference. Increasing the shear rate changed the kinetics of the structure evolution and reduced the size of the phase‐separated droplets in the steady state. No evidence was obtained for flow‐induced miscibility. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1725–1738, 2004  相似文献   

7.
The structure and thermal properties of linear low‐density polyethylene (LLDPE)/medium soft paraffin wax blends, prepared by melt mixing, were investigated by differential scanning calorimetry (DSC) and small‐ and wide‐angle X‐ray scattering (SAXS and WAXS). The blends form a single phase in the melt as determined by SAXS. Upon cooling from the melt, two crystalline phases develop for blends with more than 10 wt % wax characterized by widely different melting points. The wax acts as an effective plasticizer for LLDPE, decreasing both its crystallization and melting temperature. The higher melting point crystalline phase is formed by less branched LLDPE fractions. On the other hand, the lower melting point crystalline phase is a wax‐rich phase constituted by cocrystals of extended chain wax and short linear sequences of highly branched LLDPE chains. The presence of cocrystals was evidenced by standard DSC results, successive self‐nucleation and annealing (SSA) thermal fractionation and by the detection of a new SAXS signal attributed to the lamellar long period of the cocrystals. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1469–1482  相似文献   

8.
The morphological development and crystallization behavior of a poly(ethylene terephthalate)/poly(hydroxyl ether of bisphenol A) (phenoxy) blend were studied with time‐resolved light scattering, optical microscopy, differential scanning calorimetry, and small‐angle X‐ray scattering (SAXS). During annealing at 280 °C, liquid–liquid phase separation via spinodal decomposition proceeded in the melt‐extruded specimen. After the formation of a domain structure, the blend slowly underwent phase homogenization by the interchange reactions between the two polymers. Specimens annealed for various times (ts) at 280 °C were subjected to a temperature drop and the effects of liquid‐phase changes on crystallization were then investigated. The shifts in the position of the cold‐crystallization peaks indicated that the crystallization rate is associated with the composition change of the separated phases as well as the change of the sequence distribution in polymer chains during annealing. The morphological parameters at the lamellar level were determined by a correlation function analysis on the SAXS data. The crystal thickness (lc) increased with ts, whereas the amorphous layer thickness (la) showed little dependence on ts. Observation of a constant la value revealed that a large number of noncrystallizable species formed by the interchange reactions between the two polymers were excluded from the lamellar stacks and resided in the interfibrillar regions, interspherulitic regions, or both. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 223–232, 2008  相似文献   

9.
A blend of high‐density polyethylene and an elastomeric poly(ethylene‐co‐1‐octene) resin, containing 25 mol % octene and long‐chain branching, was phase‐separated in the melt under quiescent conditions. After melt flow, the blend had fine globular or interconnected phase morphologies that were interpreted as originating from the various stages of coarsening after liquid–liquid phase separation through spinodal decomposition. It was inferred that the miscibility of the blend was enhanced under melt flow. After cessation of flow, concurrent liquid–liquid and solid–liquid phase separation took place, resulting in the formation of an interpenetrating morphology comprising amorphous polyethylene, copolymer, and crystalline polyethylene. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 380–389, 2001  相似文献   

10.
The spherulite morphology and crystallization behavior of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) blends were investigated with optical microscopy (OM), small-angle light scattering (SALS), and small-angle X-ray scattering (SAXS). The thermal analysis showed that PET and PTT were miscible in the melt over the entire composition range. The rejected distance of non-crystallizable species, which was represented in terms of the parameter δ, played an important role in determining the morphological patterns of the blends at a specific crystallization temperature regime. The parameter δ could be controlled by variation of the composition, the crystallization temperature, and the level of transesterification. In the case of two-step crystallization, the crystallization of PTT commenced in the interspherulitic region between the grown PET crystals and proceeded until the interspherulitic space was filled with PTT crystals. The spherulitic surface of the PET crystals acted as nucleation sites where PTT preferentially crystallized, leading to the formation of non-spherulitic crystalline texture. The SALS results suggested that the growth pattern of the PET crystals was significantly changed by the presence of the PTT molecules. The lamellar morphology parameters were evaluated by a one-dimensional correlation function analysis. The blends that crystallized above the melting point of PTT showed a larger amorphous layer thickness than the pure PET, indicating that the non-crystallizable PTT component might be incorporated into the interlamellar region of the PET crystals. With an increased level of transesterification, the exclusion of non-crystallizable species from the lamellar stacks was favorable due to the lower crystal growth rates. As a result, the amorphous layer thickness of the PET crystals decreased as the annealing time in the melt state was increased.  相似文献   

11.
The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(β‐hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small‐angle X‐ray scattering (SAXS). As the PMA content increases in the blends, the glass‐transition temperature and cold‐crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium‐melting‐point depression, is −0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PHB. The radial growth rates of spherulites were analyzed with the Lauritzen–Hoffman model. The spherulites of PHB were volume‐filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1860–1867, 2000  相似文献   

12.
Structure formation by coupling between formation of crosslinking points and liquid–liquid phase separation was investigated for aqueous methyl cellulose solution by small‐angle X‐ray scattering (SAXS) and light scattering (LS) techniques. The sol–gel phase diagram and the SAXS results suggested that the liquid–liquid phase separation occurred before gelation. By LS measurements, the structure due to the liquid–liquid phase separation was directly observed. By applying speckle analysis on the LS profiles, it was suggested that the gelation and the phase separation strongly coupled each other: the increase in the apparent molecular weight by crosslinking induced the liquid–liquid phase separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 168–174, 2010  相似文献   

13.
New binary blends composed of poly(ethylene succinate) and poly(propylene succinate) or poly(ethylene succinate) and poly(butylene succinate) were prepared. Both PESu/PPSu and PESu/PBSu systems belong to semicrystalline/semicrystalline pairs. The miscibility and crystallization behavior was investigated using differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD), and polarizing light microscopy (PLM). Blends of PESu and PPSu exhibited a single composition dependent glass transition temperature over the entire range of composition, indicating that the system is miscible. The melting point depression of the high melting temperature component, PESu, was analyzed according to the Nishi‐Wang equation. A negative polymer–polymer interaction parameter was obtained, indicating that the blends are thermodynamically miscible in the melt. The two components crystallized sequentially when the blends were cooled rapidly to a low temperature. DSC traces of PESu/PBSu blends after quenching showed two distinct composition dependent glass transition temperatures between those of the neat polymers, showing that the polymers are partially miscible. The amorphous PESu/PBSu blends in the intermediate compositions showed three cold‐crystallization peaks, indicating the influence of mixing. The crystallization rates of PBSu were reduced and those of PESu were increased. WAXD showed reduced crystallinity and peak broadening in the patterns of the blends of intermediate compositions, while no spherulites could be detected by PLM. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 584–597, 2006  相似文献   

14.
Soft–hard binary polymer blends consisting of amorphous poly(silylene methylene)s (PSMs) and crystalline poly(diphenylsilylenemethylene) were prepared by both melt processing at 360 °C and in situ polymerization at 300 °C. Linear and siloxane‐crosslinked PSMs were used as amorphous components for the purpose of determining how the crosslinks affected the interactions between the component polymers. Differential scanning calorimetry and dynamic mechanical analysis indirectly suggested that discernable differences between the blends containing linear and crosslinked PSMs were attributable to the degree of interactions between the amorphous and crystalline components. The morphological differences between these blends were studied with transmission electron microscopy. The dispersion phase was smaller in the blends containing crosslinked PSM than that in the blends containing linear PSM. This directly indicated that a larger interaction between the amorphous and crystalline phases was obtained by the introduction of crosslinks because of the smaller viscosity difference between the phases and a larger degree of polymer chain entanglement. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 257–263, 2003  相似文献   

15.
It has been demonstrated that the 0‐0 absorption transition of poly(3‐hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid–liquid phase separation process during solution deposition. Pronounced J‐like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid–liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid–liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out‐set of semiconductor:insulator architectures of pre‐defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 304–310  相似文献   

16.
The conformational changes occurring in isotactic polypropylene during the melting and crystallization processes have been carefully investigated using FT‐Raman spectroscopy at temperatures below, at, and above the polymer melting point. Results confirmed the retention of some crystallinity up to +210 °C, which is 50 °C above the melting point. It was found that, at temperatures just above the melting point (1–10 °C), there is still some short range order of at least 12 monomer units long in certain regions of the melt. At 10 °C above the melting point, the short range order drops below 12 monomer units resulting in the disappearance of the Raman band at 841 cm–1. Vice versa, the experimental measurements show that the iPP melt system is stable when the persistence length of helical sequences is less than 12 monomer units. As soon as the helix length exceeds 12 units, the 31 helix conformation extends quickly and then crystallization occurs. These results are discussed in terms of Imai's microphase separation theory and it agreed very well with it. Also, from our observations for correlation splitting, Raman bands related to conformational states were identified. This analysis indicates the existence of three different conformational states at 808, 830, and 841 cm–1. The 808 cm–1 band was assigned to helical chains within crystals (representing crystalline phase). The 841 cm–1 band was shown to be composed of a band at 841 cm–1, assigned to shorter chains in helical conformation with isomeric defects (representing the isomeric defect phase), and a broader band at 830 cm–1 assigned to chains in nonhelical conformation (representing the melt‐like amorphous phase). This indicates the detection of a three‐phase structure in iPP, where a third phase could be due to the presence of defect regions within the crystalline region, or due to the presence of an amorphous–crystal interphase. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2173–2182, 2006  相似文献   

17.
Blends of two or more ethylene–styrene (ES) copolymers that differed primarily in the comonomer composition of the copolymers were studied. Available thermodynamic models for copolymer–copolymer blends were utilized to determine the criteria for miscibility between two ES copolymers differing in styrene content and also between ES copolymers and the respective homopolymers, polystyrene and linear polyethylene. Model estimations were compared with experimental observations based primarily on melt‐blended ES/ES systems, particularly via the analysis of the glass‐transition (Tg ) behavior from differential scanning calorimetry (DSC) and solid‐state dynamic mechanical spectroscopy. The critical comonomer difference in the styrene content at which phase separation occurred was estimated to be about 10 wt % for ES copolymers with a molecular weight of about 105 and was in general agreement with the experimental observations. The range of ES copolymers that could be produced by the variation of the comonomer content allowed the study of blends with amorphous and semicrystalline components. Crystallinity differences for the blends, as determined by DSC, appeared to be related to the overlapping of the Tg of the amorphous component with the melting range of the semicrystalline component and/or the reduction in the mobility of the amorphous phase due to the presence of the higher Tg of the amorphous blend component. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2976–2987, 2000  相似文献   

18.
Effect of molar mass distribution (MMD) and composition distribution (CD) on crystallization behavior of linear low‐density polyethylene materials at moderate and high supercooling was studied using differential scanning calorimetry, hot‐stage polarized light microscopy, small‐angle light scattering, and chip nanocalorimetry methods. A set of uni‐ and bimodal materials having small variation in average molar mass, density, and melt flow rate, but large differences in MMD and CD, was investigated. The results indicate a clear effect of structural heterogeneity on morphology and crystallization behavior of the materials. Broader MMD and CD increased in average radius of superstructures, melting, crystallization temperatures, and isothermal crystallization rate at different supercoolings. Origin of such behavior is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1577–1588, 2008  相似文献   

19.
The mechanism of reducing light scattering in isotactic polypropylene (i‐PP), through the addition of so‐called clarifying agents, is studied with small‐angle light scattering (SALS) and scanning electron microscopy (SEM). The clarifying agents used in this study depict monotectic phase behavior with i‐PP, crystallizing in a relatively narrow concentration range in a nanofibrillar network, providing an ultrahigh nucleation density in the i‐PP melt. It is found that the clarifying effect, a dramatically increased transparency and reduced haze, that occurs within the aforementioned additive concentration range, coincides with a change in morphology from strongly scattering spherulites to shish‐kebab‐like crystalline structures, as evidenced by in situ SALS measurements and confirmed by SEM images. A simple scaling law, relating the diameter of the shish‐kebab structures to the fibril diameter and volume fraction of the clarifying agent is proposed, suggesting that the performance of a (fibril‐forming) clarifying agent will improve by reducing the fibril diameter and/or increasing the volume concentration of the clarifying agent. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 865–874  相似文献   

20.
Small‐angle neutron scattering (SANS) was used to examine the melt phase behavior of a heavily branched comb PEE polymer blended separately with two linear PEE copolymers. In this case, PEE refers to poly(ethylene‐r‐ethylethylene) with 10% ethylene units; therefore, the molecular architecture was the only difference between the two components of the blends. The molecular weights of the two linear random copolymers were 60 and 220 kg/mol, respectively. The comb polymer contained an average of 54 long branches, with a molecular weight of 13.7 kg/mol, attached to a backbone with a molecular weight of 10 kg/mol. Three different volume compositions (25/75, 50/50, and 75/25) were investigated for both types of blends. SANS results indicate that all the blends containing the lower molecular weight linear polymer formed single‐phase mixtures, whereas all the blends containing the high molecular weight linear polymer phase‐separated. These results are discussed in the context of current theories for polymer blend miscibility. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2965–2975, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号