首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The crystal structure produced during the isothermal crystallization of polyethylene (PE) copolymers with a broad range of comonomer concentrations was determined by the measurement of the melting endotherms directly after crystallization. PE copolymers with higher concentrations of short‐chain branches (≥10 branches per 1000 total carbon atoms) exhibited strong resistance to crystal thickening during isothermal crystallization. Negligible thickening, estimated to be only about 0.1 nm in 10 min of isothermal crystallization, was observed. The side‐chain branches apparently acted as limiting points of chain incorporation into the crystals, which exhibited great resistance to the modification of their position, that is, crystal thickening. Even with long periods (up to 8 h) of isothermal storage, crystal thickening was very small or negligible, about 0.3 nm. The crystal thickness was calculated from differential scanning calorimetry data. The behavior of copolymers with lower branching concentrations and the unbranched PE homopolymer was quite different from that of the copolymers with higher branching. Polymers with low or no branching exhibited the initial crystallization of a thinner crystal population, which thickened substantially with increasing time. The thickening observed for these lower or unbranched polymers was an order of magnitude larger, that is, 1.6–2.0 nm in 10 min of isothermal crystallization. Copolymers with higher concentrations of branching had relatively short sequence lengths of ethylene units between branch points, and this resulted in strong control over the crystal thickness by the branch points and great resistance to crystal thickening, even with long times of isothermal crystallization. Copolymers with low concentrations of branching had relatively long sequence lengths of ethylene units between branch points, and this resulted in little control over the crystal thickness by the branch points and rapid crystal thickening upon isothermal crystallization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 235–246, 2003  相似文献   

2.
The effect of the γ‐form crystal on the thermal fractionation of a commercial poly(propylene‐co‐ethylene) (PPE) has been studied by differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) techniques. Two thermal fractionation techniques, stepwise isothermal crystallization (SIC) and successive self‐nucleation and annealing (SSA), have been used to characterize the molecular heterogeneity of the PPE. The results indicate that the SSA technique possesses a stronger fractionation ability than that of the SIC technique. The heating scan of the SSA fractionated sample exhibits 12 endothermic peaks, whereas the scan of the SIC fractionated sample only shows eight melting peaks. The WAXD observations of the fractionated PPE samples prove that the content of the γ‐form crystals formed during the thermal treatment of the SIC technique is much higher than that of the SSA treatment. The former is 57.4%, whereas the later is 12.6%. The effect of theγ‐form crystals on thermal fractionation ability is discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4320–4325, 2004  相似文献   

3.
In this article, the polydispersity of the ethylene sequence length (ESL) in ethylene/α‐olefin copolymers was studied by atomic force microscopy (AFM) and the thermal‐fractionation technique. The crystal morphology observation by AFM showed that morphology changed gradually with decreasing average ESL from complete lamellae over shorter and more curved lamellae to a granular‐like morphology, and the mixed morphology was observed after stepwise crystallization from phase‐separated melt. This result indicated that the ethylene sequence with different lengths crystallized into a crystalline phase with a different size and stability at the copolymer systems. The thermal‐fractionation technique was used to characterize the polydispersity of ESL. Three of the following statistical terms were introduced to describe the distribution of ESL and the lamellar thickness: the arithmetic mean L?n, the weight mean L?w, and the broadness index I = L?w/L?n. It was concluded that the polydispersity of ESL could be quantitatively characterized by the thermal‐fractionation technique. The effects of temperature range, temperature‐dependent specific heat capacity Cp of copolymer, and the molecular weight on the results of thermal fractionation were discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 813–821, 2002  相似文献   

4.
Differential scanning calorimetry was used to investigate the isothermal crystallization, subsequent melting behavior, and nonisothermal crystallization of syndiotactic 1,2‐polybutadiene (st‐1,2‐PB) produced with an iron‐based catalyst system. The isothermal crystallization of two fractions was analyzed according to the Avrami equation. The morphology of the crystallite was observed with polarized optical microscopy. Double melting peaks were observed for the samples isothermally crystallized at 125–155 °C. The low‐temperature melting peak, which appeared approximately 5 °C above the crystallization temperature, was attributed to the melting of imperfect crystals formed by the less stereoregular fraction. The high‐temperature melting peak was associated with the melting of perfect crystals formed by the stereoregular fraction. With the Hoffman–Weeks approach, the value of the equilibrium melting temperature was derived. During the nonisothermal crystallization, the Ozawa method was limited in obtaining the kinetic parameters of st‐1,2‐PB. A new method that combined the Ozawa method and the Avrami method was employed to analyze the nonisothermal crystallization of st‐1,2‐PB. The activation energies of crystallization under nonisothermal conditions were calculated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 553–561, 2005  相似文献   

5.
The deformation behavior of homogeneous ethylene‐1‐octene copolymers was investigated as a function of the crystallinity and the crystal size and perfection, respectively, by wide‐ and small‐angle X‐ray scattering using synchrotron radiation. The crystallinity and the crystal size and perfection, respectively, are controlled by the copolymer composition and the condition of melt crystallization. The deformation includes rotation of crystals, followed by plastic deformation and complete melting of the initial crystal population, and final formation of microfibrils. The process of rotation, plastic deformation, and melting of crystals of the initial structure is completed at lower strain if the size and perfection of the crystals, respectively, decrease, that is, if crystals thermally melt at lower temperature. The kinetics of the fibrillation of the initial structure seems independent of the crystal symmetry, that is, rotation and melting of pseudohexagonal and orthorhombic polyethylene crystals (as evident in low‐crystalline specimens) are similar. The structure of the microfibrils, before and after stress release, is almost independent of the condition of prior melt crystallization, which supports the notion of complete melting of the initial crystal population. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1919–1930, 2002  相似文献   

6.
A semicrystalline ethylene‐hexene copolymer (PEH) was subjected to a simple thermal treatment procedure as follows: the sample was isothermally crystallized at a certain isothermal crystallization temperature from melt, and then was quenched in liquid nitrogen. Quintuple melting peaks could be observed in heating scan of the sample by using differential scanning calorimeter (DSC). Particularly, an intriguing endothermic peak (termed as Peak 0) was found to locate at about 45 °C. The multiple melting behaviors for this semicrystalline ethylene‐hexene copolymer were investigated in details by using DSC. Wide‐angle X‐ray diffraction (WAXD) technique was applied to examine the crystal forms to provide complementary information for interpreting the multiple melting behaviors. Convincing results indicated that Peak 0 was due to the melting of crystals formed at room temperature from the much highly branched ethylene sequences. Direct heating scans from isothermal crystallization temperature (Tc, 104–118 °C) were examined for comparison, which indicated that the multiple melting behaviors depended on isothermal crystallization temperature and time. A triple melting behavior could be observed after a relatively short isothermal crystallization time at a low Tc (104–112 °C), which could be attributed to a combination of melting of two coexistent lamellar stack populations with different lamellar thicknesses and the melting‐recrystallization‐remelting (mrr) event. A dual melting behavior could be observed for isothermal crystallization with both a long enough time at a low Tc and a short or long time at an intermediate Tc (114 °C), which was ascribed to two different crystal populations. At a high Tc (116–118 °C), crystallizable ethylene sequences were so few that only one single broad melting peak could be observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2100–2115, 2008  相似文献   

7.
The structural changes of two linear polyethylenes, LPEs, with different molar mass and of two homogeneous copolymers of ethylene and 1‐octene with comparable comonomer content but different molar mass were monitored during heating at 10 °C per minute using synchrotron radiation SAXS. Two sets of samples, cooled at 0.1 °C per minute and quenched in liquid nitrogen, respectively, were studied. All LPEs display surface melting between room temperature and the end melting temperature, whereas complete melting, according to lamellar thickness, only occurs at the highest temperatures where DSC displays a pronounced melting peak. There is recrystallization followed by isothermal lamellar thickening if annealing steps are inserted. The lamellar crystals of slowly cooled homogeneous copolymers melt in the reverse order of their formation, that is, crystals melt according to their thickness. Quenching creates unstable crystals through the cocrystallization of ethylene sequences with different length. These crystals repeatedly melt and co‐recrystallize during heating. The exothermic heat due to recrystallization partially compensates the endothermic heat due to melting resulting in a narrow overall DSC melting peak with its maximum at a higher temperature than the melting peak of slowly cooled copolymers. With increasing temperature, the crystallinity of quenched copolymers overtakes the one of slowly cooled samples due to co‐recrystallization by which an overcrowding of leaving chains at the crystal surfaces is avoided. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1975–1991, 2000  相似文献   

8.
Melt crystallization behaviors of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate‐co‐isophthalate) (PETI) containing 2 and 12 mol % of noncrystallizable isophthalate components were investigated. Differential scanning calorimetry (DSC) isothermal results revealed that the introduction of 2 mol % isophthalate into PET caused a change of the crystal growth process from a two‐dimensional to a three‐dimensional spherulitic growth. The addition of more isophthalate up to 12 mol % into the PET structure induced a change in the crystal growth from a three‐dimensional to a two‐dimensional crystal growth. DSC heating scans after completion of isothermal crystallization at various Tc's showed three melting endotherms for PET and four melting endotherms for PETI‐2 and PETI‐12. The presence of an additional melting endotherm is attributed to the melting of copolyester crystallite composed of ethylene glycol, tere‐phthalate, and isophthalate (IPA) or the melting of molecular chains near IPA formed by melting the secondary crystallite Tm (I) and then recrystallizing during heating. Analyses of both Avrami and Lauritzen‐Hoffman equations revealed that PETI containing 2 mol % of isophthalate had the highest Avrami exponent n, growth rate constant Go, and product of lateral and end surface free energies σσe. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2515–2524, 2000  相似文献   

9.
After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 ∼ 1.2, probably reflecting one‐dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 53–60, 2000  相似文献   

10.
Small-angle X-ray scattering, wide-angle X-ray diffraction and differential scanning calorimetry analysis were carried out to evaluate the evolution of the supermolecular structure of poly(ethylene terephthalate) (PET) during isothermal crystallization and annealing process. PET was crystallized from the melt by isothermal treatments at 226 °C. Partially crystallized samples were prepared interrupting the crystallization by quenching, while prolonged treatments were performed to prepare annealed samples. The adopted crystallization procedures allowed to form crystals which developed during primary and secondary crystallization, and the annealing process. On the basis of X-ray data, the lamellar and amorphous phases were unambiguously attributed. The lamellar thickness and the crystallinity progressively enhance with increasing the time of thermal treatment; on the contrary, the long period decreases and this effect is mainly due to the contraction of the amorphous phase. The melting behaviour of the annealed samples indicates that the heating-induced crystal reorganization phenomena are inconsistent. The interdependency between the melting temperature and the crystal thickness allowed to extrapolate the equilibrium melting temperature.  相似文献   

11.
The morphologies and crystalline structures of melt‐crystallized ultrathin isotactic poly(1‐butene) films have been studied with transmission electron microscopy and electron diffraction. It is demonstrated that a bypass of form II crystallization can be achieved with an increase in its crystallization temperature. Electron microscopy observations show that melt‐grown isotactic poly(1‐butene) single crystals have a well‐shaped hexagonal form, whereas form I crystals converted from form II display the morphologies of their tetragonal precursors. Electron diffraction results indicate that, instead of the twinned hexagonal pattern of the converted form I crystal, the directly formed form I single crystals exhibit an untwinned hexagonal pattern. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2641–2645, 2002  相似文献   

12.
Liquid–liquid phase separation and subsequent homogenization during annealing in an extruded poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blend were investigated with time‐resolved light scattering and optical microscopy. In the initial stage, the domain structure was developed by demixing via spinodal decomposition. In the later stage, the blend was homogenized by transesterification between the two polyesters. The crystallization rate depended on the sequence distribution of polymer chains, which was determined by the level of transesterification rather than the composition change of separated phases. When the crystallization of PEN preceded that of PET, PEN showed a higher melting point. However, when the crystallization rate of PEN was slower than that of PET, the previously formed PET crystals suppressed the crystallization of PEN, causing the coarse crystalline structure of PEN to have a lower melting point. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2625–2633, 2000  相似文献   

13.
The crystallization and morphology of poly(ethylene‐2,6‐naphthalene dicarboxylate) (PEN) containing, as nucleating agents, a sodium salt of a copolymer of ethylene and acrylic acid or a sodium salt of a copolymer of ethylene and methacrylic acid, were investigated with differential scanning calorimetry, polarized optical microscopy, and small‐angle light scattering. The nucleating agents accelerated the crystallization rate at high temperatures by decreasing the surface free energy barrier hindering nucleation. Meanwhile, the nucleating agents with flexible chains could also improve the mobility of the PEN chains and increase the crystallization rate at low temperatures. Hedrites were observed when PEN was crystallized at high temperatures, whereas crystallization at low temperatures led to the formation of spherulites. Similar but smaller morphologies were obtained in the presence of nucleating agents. With nucleating agents, the spherulites formed at low temperatures were less perfect, although the optical properties of the spherulites were not influenced. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2387–2394, 2002  相似文献   

14.
The complex melting behavior of isotactic polypropylene, after isothermal crystallization, was studied within the context of step‐like melting mechanisms which were previously proposed for high temperature polymers. The morphological characteristics of the melting process were also studied as a function of molecular weight, and close similarities were observed with respect to high temperature polymers. Positive birefringence crystals of low molecular weight samples developed double melting behavior in three steps. The first melting step was assigned to continuous melting of secondary crosshatch reversing lamellae, together with recrystallization of the remaining isothermal crystals. In the second melting step (first melting endotherm), crystals tended to lose their original coarse negative birefringence due to melting of secondary reversing branching. This effect rendered new, finer texture, but still negative birefringence crystals. In the third melting step (second melting endotherm), there was a combination of melting of two crystal populations, one consisting of the remaining fraction of reversing primary crystals, and the other consisting of nonreversing primary crystals. A crosshatch secondary branching model was therefore proposed to explain the overall results. Mixed birefringence spherulites of high molecular weight samples displayed similar, although proportional, behavior under identical crystallization and melting conditions corroborating the proposed melting mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2188–2200, 2008  相似文献   

15.
The effect of uniaxial deformation and subsequent relaxation at ambient temperature on irreversible and reversible crystallization of homogeneous poly(ethylene‐co‐1‐octene) with 38 mol % 1‐octene melt‐crystallized at 10 K min was explored by calorimetry, X‐ray scattering, and Fourier transform infrared spectroscopy. At 298 K, the enthalpy‐based crystallinity of annealed specimens increased irreversibly by stress‐induced crystallization from initially 15% to a maximum of, at least, 19% when a permanent set of more than 200% was attained. The crystallinity increased by formation of crystals of pseudohexagonal structure at the expense of the amorphous polymer, and as a result of destruction of orthorhombic crystals. The stress‐induced increase of crystallinity was accompanied by an increase in the apparent specific heat capacity from 2.44 to about 2.59 J g?1 K?1, which corresponds to an increase of the total reversibility of crystallization from, at least, 0.10 to 0.17% K?1. The specific reversibility calculated for 100% crystallinity increased from 0.67 to 0.89% K?1 and points to a changed local equilibrium at the interface between the crystal and amorphous phases. The deformation resulted in typical changes of the phase structure and crystal morphology that involve orientation and destruction of crystals as well as the formation of fibrils. The effect of the decrease of the entropy of the strained melt on the reversibility of crystallization and melting is discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1223–1235, 2002  相似文献   

16.
This study examined the oxygen‐transport properties of poly(ethylene terephthalate‐co‐bibenzoate) (PETBB55) crystallized from the melt (melt crystallization) or quenched to glass and subsequently isothermally crystallized by heating above the glass‐transition temperature (cold crystallization). The gauche–trans conformation of the glycol linkage was determined by infrared analysis, and the crystalline morphology was examined by atomic force microscopy. Oxygen solubility decreased linearly with volume fraction crystallinity. For melt‐crystallized PETBB55, extrapolation to zero solubility corresponded to an impermeable crystal with 100% trans glycol conformations, a density of 1.396 g cm?3, and a heat of melting of 83 J g?1. From the melt, PETBB55 crystallized as space‐filling spherulites with loosely organized lamellae and pronounced secondary crystallization. The morphological observations provided a structural model for permeability consisting of impermeable platelets randomly dispersed in a permeable matrix. In contrast, cold‐crystallized PETBB55 retained the granular texture of the quenched polymer despite the high level of crystallinity, as measured by the density and heat of melting. Oxygen solubility decreased linearly with volume fraction crystallinity, but zero solubility corresponded to an impermeable defective crystal with a trans fraction of 0.83 and a density of 1.381 g cm?3. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2489–2503, 2002  相似文献   

17.
Lamellar single crystals of poly(butylene succinate) (PBS) with novel morphologies were prepared from a chloroform/methanol solution by self‐seeding methods. Crystal structures and morphologies were investigated by means of atomic force microscopy (AFM). Lath‐shaped crystal and hexagonal‐shaped crystals coexist in one PBS single crystal and this has a lamellar thickness of around 5–6 nm as determined by AFM. The thickening of lamellae from 5–6 to 7–9 nm occurred during heating from 41 to 84 °C. In situ temperature‐controlled AFM observations demonstrated that the lath‐shaped crystal sections melted first and then the hexagonal sections while the edge of the single crystals remained regular during annealing. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1492–1496, 2009  相似文献   

18.
19.
Copolyester was synthesized and characterized as having 89.9 mol % ethylene succinate units and 10.1 mol % butylene succinate units in a random sequence, as revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 30 to 73 °C using differential scanning calorimetry (DSC). The melting behavior after isothermal crystallization was investigated using DSC by varying the Tc, the heating rate and the crystallization time. DSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are associated primarily with the melting of lamellar crystals with various stabilities. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman‐Weeks linear plot gives an equilibrium melting temperature of 107.0 °C. The spherulite growth of this copolyester from 80 to 20 °C at a cooling rate of 2 or 4 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera. Continuous growth rates between melting and glass transition temperatures can be obtained after curve‐fitting procedures. These data fit well with those data points measured in the isothermal experiments. These data were analyzed with the Hoffman and Lauritzen theory. A regime II → III transition was detected at around 52 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2431–2442, 2008  相似文献   

20.
The occurrence of a molecular complex between poly(ethylene oxide) (PEO) and p‐dihydroxybenzene (hydroquinone) has been determined using different experimental techniques such as differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FTIR). From DSC investigations, an ethylene oxide/hydroquinone molar ratio of 2/1 was deduced. During the heating, the molecular complex undergoes a peritectic reaction and spontaneously transforms into a liquid phase and crystalline hydroquinone (incongruent melting). A triclinic unit cell (a = 1.17 nm, b = 1.20 nm, c = 1.06 nm, α = 78°, β = 64°, γ = 115°), containing eight ethylene oxide (EO) monomers and four hydroquinone molecules, has been determined from the analysis of the X‐ray diffraction fiber patterns of stretched and spherulitic films. The PEO chains adopt a helical conformation with four monomers per turn, which is very similar to the 72 helix of the pure polymer. A crystal structure is proposed on the basis of molecular packing considerations and X‐ray diffraction intensities. It consists of a layered structure with an alternation of PEO and small molecules layers, both layers being stabilized by an array of hydrogen bonds. The morphology of PEO–HYD crystals was studied by small angle X‐ray scattering and DSC. As previously shown for the PEO–resorcinol complex, PEO–HYD samples crystallize with a lamellar thickness corresponding to fully extended or integral folded chains. The relative proportion of lamellae with different thicknesses depends on the crystallization temperature and time. Finally, the observed morphologies are discussed in terms of intermolecular interactions and chain mobility. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1197–1208, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号