首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In a mathematics course for prospective elementary teachers, we strove to model standards‐based pedagogy. However, an end‐of‐class reflection revealed the prospective teachers were considering incorporating standards‐based strategies in their future classrooms in ways different from our intent. Thus, we drew upon the framework presented by Simon, Tzur, Heinz, Kinzel, and Smith to examine the prospective teachers' perspectives on mathematics teaching and learning and to address two research questions. What perspectives on the learning and teaching of mathematics do prospective elementary teachers hold? How do their perspectives impact their perception of standards‐based instruction in a mathematics course and their future teaching plans? Qualitative analyses of reflections from 106 prospective teachers revealed that they viewed mathematics as a logical domain representative of an objective reality. Their instructional preferences included providing firsthand opportunities for elementary students to perceive mathematics. They did not take into account the impact of a student's conceptions upon what is learned. Thus, the prospective teachers plan to incorporate standards‐based strategies to provide active experiences for their future elementary students, but they fail to base such strategies upon students' current mathematical conceptions. Throughout, the need to address prospective teachers' underlying perspectives of mathematics teaching and learning is stressed.  相似文献   

2.
This paper reports on the use of continuous assessment in a statistics course for social scientists, in which assignments are open‐ended and use real data. The students' performance in the assignments and a formal examination are compared, and it is found that when students are assessed by a combination of continuous assessment and examination, those students who carry out the majority of the assignments score higher examination marks than do the rest.  相似文献   

3.
This study explored the use of student-constructed concept maps in conjunction with written interpretive essays as an additional method of assessment in three undergraduate mathematics courses. The primary objectives of this study were to evaluate the benefits of using concept maps and written essays to assess the “connectedness” of students' knowledge; to measure the correlation between students' scores on the concept maps and written essays, course exams, and final grade; and to document students' perception of the effect of this approach on their mathematical knowledge. Results indicated that concept maps, when combined with written essays, are viable tools for assessing students' organization of mathematical knowledge. In addition, students perceive this approach as enhancing their mathematical knowledge.  相似文献   

4.
When worthwhile mathematical tasks are used in classrooms, they should also become a crucial element of assessment. For teachers, using these tasks in classrooms requires a different way to analyze student thinking than the traditional assessment model. Looking carefully at students' written work on worthwhile mathematical tasks and listening carefully while students explore these worthwhile tasks can contribute to a teacher's professional development. This paper reports on a professional development activity in which teachers analyzed mathematical tasks, predicted students' achievement on tasks, evaluated students' written work, listened to students' reasoning, and assessed students' understanding. Teachers' engagement in this way can help them develop flexibility and proficiency in the evaluation of their own students' work. These experiences allow teachers the opportunity to recognize students' potential, strengthen their own mathematical understanding, and engage in conversations with peers about assessment and instruction.  相似文献   

5.
Understanding mathematical functions as systematic processes involving the covariation of related variables is foundational in learning mathematics. In this article, findings are reported from two investigations examining students' thinking processes with functions. The first study focused on seven middle school students' explorations with a dynamic physical model. Students were videotaped during the 20‐ to 45‐minute sessions occurring two or three times per week over a period of 2 months, and students' written work was collected. The second investigation included 19 preservice elementary and middle school teachers enrolled in a course focusing on a combination of mathematical content and pedagogy. Participants' written problem‐solving work and reflective writing were collected, and participants were individually interviewed in 50‐minute videotaped sessions. Results from both investigations indicated that students often relied on a table, or some variation of a table, as a cognitive link advancing the development of their reasoning about underlying function relationships.  相似文献   

6.
The purpose of this study was to investigate the impact of a hands‐on science curriculum, which integrates mathematics and supports English language development, on third‐grade students' mathematics achievement—specifically the measurement subscale of the statewide assessment. The data drew from a larger five‐year research and development project consisting of reform‐based science curriculum units and teacher workshops designed to promote effective science instruction while integrating mathematics and supporting English language development. The third‐grade curriculum places a strong emphasis on measurement skills in the context of science inquiry. The third‐grade students' performance on the measurement subscale of the statewide mathematics assessment in the treatment schools was compared with that of comparison schools using a hierarchical linear model. Students at the treatment schools performed significantly higher than students at the comparison schools. The results provide evidence that an integrated approach to mathematics and science instruction can benefit diverse student groups.  相似文献   

7.
To meet the challenge to reform mathematics education, effective opportunities to learn are needed to promote prospective elementary school teachers' development of the knowledge base that supports teaching for mathematical proficiency. This article describes three professional development interventions and their influence on prospective teachers' beliefs about mathematics, how children learn mathematics, and mathematics teaching. The three interventions consisted of problem‐solving journals, structured interviews, and peer teaching that were integrated in a PreK‐6 mathematics methods course. Results of precourse and postcourse survey data are included that measured 24 prospective teachers' beliefs about the knowledge base needed to teach elementary school mathematics. Data indicated that using these interventions and other course experiences facilitated change in the prospective teachers' beliefs, with a shift toward reform‐oriented mathematics education perspectives.  相似文献   

8.
This paper illustrates ways to employ teacher portfolios to improve the quality of methods course experiences for prospective mathematics teachers. Based upon research conducted in an undergraduate teacher preparation program, this case study describes how the author used teacher portfolios to mentor prospective teachers in new ways. The case describes the author's experiences through a case study of his assessment of and response to one prospective teacher's portfolio. This portfolio illustrated themes that were present in other teachers' portfolios, but did so in ways that highlighted strategies for change to the methods course. Through the lens of this teacher's portfolio the author identified specific ways that the prospective teacher's beliefs were impacting her teaching practice, a result that enabled him to better help all of the teachers in the methods course reflect on their teaching. By providing a detailed account of the feedback process that led to this result, this paper illustrates how mathematics teacher educators can use prospective teachers' portfolios to enrich the quality of their methods courses.  相似文献   

9.
This study investigated differences and shifts in learning and motivation constructs among male and female students in a nonmajors, yearlong structured inquiry college physics course and examined how these variables were related to physics understanding and course achievement. Tests and questionnaires measured students' learning approaches, motivational goals, self‐efficacy, epistemological beliefs, scientific reasoning abilities, and understanding of central physics concepts at the beginning and end of the course. Course achievement scores were also obtained. The findings showed that male students had significantly higher self‐efficacy, performance goals, and physics understanding compared to females, which persisted throughout the course. Differential shifts were found in students' meaningful learning approaches, with females tending to use less meaningful learning from beginning to end of the course; and males using more meaningful learning over this time period. For both males and females, self‐efficacy significantly predicted physics understanding and course achievement. For females, higher reasoning ability was also a significant predictor of understanding and achievement; whereas for males, learning goals and rote learning were significant predictors, but in a negative direction. The findings reveal that different variables of learning and motivation may be important for females' success in inquiry physics compared to males. Instructors should be cognizant of those needs in order to best help all students learn and achieve in college physics.  相似文献   

10.
This article presents the scores teachers assigned to samples of actual students' problem-solving work and the rationales teachers provided for these scores. These rationales may reflect teachers' values relative to aspects of mathematical problem solving. It may be that when teachers can express rationales for scoring students' work, they are able to justify their evaluation of what students can “know and do” in mathematics.  相似文献   

11.
Many K–8 preservice teachers have not experienced learning mathematics in a standards‐based classroom. This article describes a mathematics content course designed to provide preservice teachers experiences in learning mathematics that will help build a solid foundation for a standards‐based methods course. The content course focuses on developing preservice teachers' mathematical knowledge, as well as helping them realize what it means to learn mathematics that is taught using the pedagogy in the Principles and Standards for School Mathematics ( National Council of Teachers of Mathematics, 2000 ). Furthermore, findings are presented from a study on this course that describe students' pre‐ and postcourse beliefs, attitudes, and perceptions of what it means to learn and teach mathematics. These findings provide evidence that the students in the study are beginning to understand what is meant by a standards‐based classroom. Data were collected from surveys and interviews. Quotes from the students who aspire to be elementary teachers are used throughout the article to support the points.  相似文献   

12.
Prospective elementary teachers hold preconceived ideas about elementary school students' attitudes toward mathematics. We found that there exists a gender bias with prospective teachers expecting girls to have negative attitudes toward mathematics and boys more likely to have positive attitudes toward mathematics. We found that these expectations exist for both prospective teachers in a traditional undergraduate degree program and prospective teachers in an alternative licensure graduate degree program. We also found that these expectations do change with the completion of a mathematics methods course and classroom experiences.  相似文献   

13.
The purpose of this research was to evaluate a collaborative concept‐mapping technique that was integrated into coteaching in fourth‐grade science classes in order to examine students' performance and attitudes toward the experimental teaching method. There are two fourth‐grade science teachers and four classes with a total of 114 students involved in the study. This study used a mixed method design, incorporating both quantitative and qualitative techniques. The findings showed that the two teaching methods obtained significant difference with respect to students' test scores. Using collaborative concept mapping to learn science could increase the opportunity of discussion between peers, thus fostering better organization and understanding the content. In addition, coteaching could enable teachers to share their expertise with one another. It could facilitate the implementation of collaborative concept mapping and the construction of student's concept mapping. Team teachers' attitude could affect the students' learning performance. However, some of the students had negative views on drawing concept maps because they found it was troublesome to write down many words, difficult to draw and arrange proposition, and time‐consuming. Coteachers' instant feedback and students' journal writing could guide and examine the students' concept maps to facilitate their cognitive learning.  相似文献   

14.
This article presents ways in which students ascertain that what they have learned in mathematics is true. Students in the middle school (and a few from other grades) were interviewed by prospective and in‐service teachers. Students were asked what they had learned recently in mathematics and how they knew it was true. The answers were grouped by the author according to the justification schemes used by the students in their explanations. Students interviewed used three kinds of justification schemes: externally based, empirical, and analytic. For each kind, examples are provided of students' justifications. Additional insights are included from the reflections of the interviewers. Some suggestions are offered regarding how teachers can help increase their students' ability to give convincing arguments in mathematics.  相似文献   

15.
This study was designed to examine the impact of participating in an after‐school robotics competition on high school students' attitudes toward science. Specifically, this study used the Test of Science‐Related Attitude to measure students' social implications of science, normality of scientists, attitude toward scientific inquiry, adoption of scientific attitudes, enjoyment of science lessons, leisure interest in science, and career interest in science. Results indicated that students who participated in a robotic competition had a more positive attitude toward science and science‐related areas in four of the seven categories examined: social implications of science, normality of scientists, attitude toward scientific inquiry, and adoption of scientific attitudes. Implications of results on students' attitudes are discussed.  相似文献   

16.
This paper describes a proportional reasoning problem set within a real‐life context and a complete analysis of one small group discussion of this problem over the course of a 90‐minute block. The seventh‐grade students' discourse is described to provide insights into typical mathematical interpretations of this problem, as well as some generalizations for other problems of this type. The interpretations provided reveal the gradual development of proportional reasoning in a local context from additive to multiplicative understandings.  相似文献   

17.
High‐quality after‐school programs devoted to science have the potential to enhance students' science knowledge and attitudes, which may impact their decisions about pursuing science‐related careers. Because of the unique nature of these informal learning environments, an understanding of the relationships among aspects of students' content knowledge acquisition and attitudes toward science may aid in the development of effective science‐related interventions. We investigated the impact of a semester‐long after‐school intervention utilizing an inquiry‐based infectious diseases curriculum (designed for use after‐school) on 63 urban students' content knowledge and aspects of their attitudes toward science. Content knowledge increased 24.6% from pretest to posttest. Multiple regression analyses indicated suggested that the “self‐directed effort” subscale of the Simpson–Troost Attitude Questionnaire—Revised best predicted increases in students' science content knowledge. The construct “science is fun for me” served as a suppressor effect. These findings suggest that future after‐school programs focusing on aspects of attitudes toward science most closely associated with gains in content knowledge might improve students' enthusiasm and academic preparedness for additional science coursework by improving student attitudes toward their perceptions of their self‐directed effort.  相似文献   

18.
We explore the influence of family on adolescent students' mathematical habitus by investigating the association between students' perceptions of parental influence and their dispositions towards mathematics. A construct measuring ‘perceived parental influence’ was validated using Rasch methodology on data from 563 Cypriot students on ‘core’ and ‘advanced’ mathematics pre-university courses, and was then used to predict students' dispositions towards future study of mathematically-demanding courses at university. In most of the regression models, perceived parental influence was not associated significantly with students' dispositions towards mathematics, when other variables were included in the models. However, further statistical analysis showed that perceived parental influence is mediated by (i) the mathematics course students are studying and (ii) their mathematical inclination. We suggest that family influences on students' dispositions are significantly accounted for by students' prior choice of mathematics course and the family's inculcation of their mathematical inclination; these are important factors influencing university choices.  相似文献   

19.
This research reports on prospective middle school teachers' perceptions of a “best mathematics class” during their involvement in an inquiry‐designed mathematics content course. Grounded in the prestigious Glenn Commission report ( U.S. Department of Education, 2000 ), the study examined the prospective teachers' perceptions of effective mathematics instruction both prior to and after completing the inquiry course. Pre‐essay analysis revealed that students could be grouped into one of two categories: the Watch‐Learn‐Practice view and the Self as Initiator view. Post‐essay analysis indicated that over two thirds of all students involved in the study changed their views of a best math class after the inquiry courses. The Watch‐Learn‐Practice group's changes focused on developing reasoning skills and learning how one “knows” in mathematics. The Self as Initiator group noted expanded roles for the students, particularly emphasizing the importance of going beyond basic requirements to think deeply about the why and how of mathematics and expanded views of the benefits of group learning.  相似文献   

20.
Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed‐methods study, we report the impacts of an inquiry‐based science course on preservice elementary teachers' self‐efficacy for science and science teaching, understanding of science, and willingness to teach it in their future careers. Our findings suggest that for some students, the inquiry‐based science course positively influenced their self‐efficacy for science and science teaching. Gains were made in a majority of students' conceptual understanding of science, understanding of the science process and scientific research, and confidence with science and science teaching. The subjects did not experience the course uniformly, however. Rather, there appeared to be two distinct groups, one on a trajectory of improving their outlook on science teaching and one worsening. The results presented here therefore provoke some interesting questions regarding preservice elementary teachers' preparation for science teaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号