首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the binding properties of [Ru(phen)(2)dppz](2+) complex (phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c]phenazine) in a sequence-specific manner in DNA duplex, it was tethered through the dppz ligand to a central position as well as both at the 3'- and 5'-ends of oligodeoxyribonucleotide (ODN). The middle [Ru(phen)(2)dppz](2+)-ODN tethered was resolved and isolated as four pure diastereomers, while the 3'- or 5'-[Ru(phen)(2)dppz](2+)-ODNs were inseparable on RP-HPLC. Thermal stability of the (Ru(2+)-ODN).DNA duplexes is found to increase considerably (DeltaT(m) = 12.8-23.4 degrees C), depending upon the site of the covalent attachment of the tethered [Ru(phen)(2)dppz](2+) complex, or the chirality of the [Ru(phen)(2)dppz](2+)-linker tethered at the middle of the ODN, compared to the unlabeled counterpart. Gross differences in CD between the [Ru(phen)(2)dppz](2+)-tethered and the native DNA duplexes showed that the global duplex conformation of the former has considerably altered from the B-type, but is still recognized by DNase I. The thermal melting studies, CD measurements, as well as DNase I digestion data, are interpreted as a result of intercalation of the dppz moiety, which is realized by threading of the Ru(phen)(2) complex part through the DNA duplex core. DNase I footprinting with four diastereomerically pure middle ([Ru(phen)(2)dppz](2+)-ODN).DNA duplexes furthermore showed that the tethered [Ru(phen)(2)dppz](2+)-linker chirality dictates the stereochemical accessibility of various phosphodiester moieties (around the intercalation site) toward the cleavage reaction by the enzyme. The diastereomerically pure ruthenium-modified duplexes, with the well-defined pi-stack, will be useful to explore stereochemistry-dependent energy- and electron-transfer chemistry to understand oxidative damage to the DNA double helix as well as the long-range energy- and electron-transfer processes with DNA as a reactant.  相似文献   

2.
Methyl substituents on the distant benzene ring of the dppz ligand in the "light switch" complex [Ru(phen)(2)dppz](2+) have profound effects on the photophysics of the complexes in water as well as in the polyol solvents ethylene glycol, glycerol, and 1,2- and 1,3-propanediol. Whereas 11,12-dimethyl substitution decreases the rate of quenching by diminishing hydrogen bonding by solvent, the 10-methyl substituent in addition also decreases both the radiative and the nonradiative rate constant for decay to the ground state of the non-hydrogen-bonded excited state species. For both the 10-methyl and the 11,12-dimethyl derivatives, the effect of methyl substitution on the equilibrium of solvent hydrogen bonding to the excited state is due to changes in the entropy terms, rather than in the enthalpy, indicating that the effect is a steric perturbation of the solvent cage around the molecule. When intercalated into DNA, the effects of methyl substitution is smaller than those in polyol solvent or water, suggesting that the water molecules that quench the excited state by hydrogen bonding to the phenazine aza nitrogens mainly access them from the same groove as in which the Ru(II) ion resides. Since the Delta-enantiomer of [Ru(phen)(2)10-methyl-dppz](2+) has an absolute quantum yield of up to 0.23 when bound to DNA, a value 7000 times higher than in pure water solution, it is promising as a new luminescent DNA probe.  相似文献   

3.
We report temperature-dependent excited-state lifetime measurements on [Ru(bpy)(2)dppz](2+) in both protic and aprotic solvents. These experiments yield a unifying picture of the excited-state photophysics that accounts for observations in both types of solvent. Our measurements support the notion of bpy-like and phz-like states associated with the dppz ligand and show that the ligand orbital associated with the bright state is similar in size to the corresponding orbital in the (3)MLCT state of [Ru(bpy)(3)](2+). In contrast to the current thinking, the experiments presented here indicate that the light-switch effect is not driven by a state reversal. Rather, they suggest that the dark state is always lowest in energy, even in aprotic solvents, and that the light-switch behavior is the result of a competition between energetic factors that favor the dark state and entropic factors that favor the bright (bpy) state.  相似文献   

4.
The bi‐exponential emission decay of [Ru(L)2dppz]2+ (L=N,N′‐diimine ligand) bound to DNA has been studied as a function of polynucleotide sequence, enantiomer, and nature of L (phenanthroline vs. bipyridine). The lifetimes (τi) and pre‐exponential factors (αi) depend on all three parameters. With [poly(dA‐dT)]2, the variation of αi with [Nu]/[Ru] has little dependence on L for Λ‐[Ru(L)2dppz]2+ but a substantial dependence for Δ‐[Ru(L)2dppz]2+. With [poly(dG‐dC)]2, by contrast, the Λ‐enantiomer αi values depend strongly on the nature of L, whereas those of the Δ‐enantiomer are relatively unaffected. DNA‐bound linked dimers show similar photophysical behaviour. The lifetimes are identified with two geometries of minor‐groove intercalated [Ru(L)2dppz]2+, resulting in differential water access to the phenazine nitrogen atoms. Interplay of cooperative and anti‐cooperative binding resulting from complex–complex and complex–DNA interactions is responsible for the observed variations of αi with binding ratio. [Ru(phen)2dppz]2+ emission is quenched by guanosine in DMF, which may further rationalise the shorter lifetimes observed with guanine‐rich DNA.  相似文献   

5.
研究发现, [Ru(phen)2dppz]2+表现出非常强的自聚合倾向, 并显著影响DNA的键合性质, 有关方面的研究应引起科研工作者的足够重视.  相似文献   

6.
Three ruthenium(II) polypyridine complexes of general formula [Ru(bpy)(3-n)(TTF-dppz)n](PF6)2 (n=1-3, bpy=2,2'-bipyridine), with one, two or three redox-active TTF-dppz (4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2',3'-c]phenazine) ligands, were synthesised and fully characterised. Their electrochemical and photophysical properties are reported together with those of the reference compounds [Ru(bpy)3](PF6)2, [Ru(dppz)3](PF6)2 and [Ru(bpy)2(dppz)](PF6)2 and the free TTF-dppz ligand. All three complexes show intraligand charge-transfer (ILCT) fluorescence of the TTF-dppz ligand. Remarkably, the complex with n=1 exhibits luminescence from the Ru(2+)-->dppz metal-to-ligand charge-transfer ((3)MLCT) state, whereas for the other two complexes, a radiationless pathway via electron transfer from a second TTF-dppz ligand quenches the (3)MLCT luminescence. The TTF fragments as electron donors thus induce a ligand-to-ligand charge-separated (LLCS) state of the form TTF-dppz- -Ru(2+)-dppz-TTF(+). The lifetime of this LLCS state is approximately 2.3 micros, which is four orders of magnitude longer than that of 0.4 ns for the ILCT state, because recombination of charges on two different ligands is substantially slower.  相似文献   

7.
The salts [(eta-C(5)Me(5))Ru(NO)(bipy)][OTf](2) (1[OTf](2)) and [(eta-C(5)Me(5))Ru(NO)(dppz)][OTf](2) (2[OTf](2)) are obtained from the treatment of (eta-C(5)Me(5))Ru(NO)(OTf)(2) with 2,2'-bipyridine (bipy) or dipyrido[3,2-a:2',3'-c]phenazine (dppz) (OTf = OSO(2)CF(3)). X-ray data for 1[OTf](2): monoclinic space group P2(1)/c, a = 11.553 (4) ?, b = 16.517 (5) ?, c = 14.719 (4) ?, beta = 94.01 (2) degrees, V = 2802 (2) ?(3), Z = 4, R1 = 0.0698. X-ray data for 2[OTf](2): monoclinic space group P2(1)/c, a = 8.911 (2) ?, b = 30.516 (5) ?, c = 24.622 (4) ?, beta = 99.02 (1) degrees, V = 6613 (2) ?(3), Z = 8, R1 = 0.0789. Both 1[OTf](2) and 2[OTf](2) are soluble in water where they exhibit irreversible electrochemical oxidation and reduction. A fluorescence-monitored titration of a DNA solution containing 2[OTf](2) with ethidium bromide provides evidence that 2(2+) intercalates into DNA with a binding constant greater than 10(6) M(-)(1). DNA cleavage occurs when the DNA solutions containing 2[OTf](2) are photolyzed or treated with H(2)O(2) or K(2)S(2)O(8).  相似文献   

8.
Chen M  Li H  Shao J  Huang Y  Xu Z 《Inorganic chemistry》2011,50(6):2043-2045
In this correspondence, we report on the first preparation of [Ru(bpy)(2)(dppz)](2+)-intercalated (bpy = 2,2'-bipyridine; dppz = dipyrido[3,2-a:2',3'-c]phenazine) DNA films on an indium-tin oxide surface via a solution-based self-standing strategy, carried out by the direct mixing of aqueous solutions of both anionic DNA and cationic metallointercalator at a molar ratio of 5:6. The luminescence of a [Ru(bpy)(2)(dppz)](2+)-intercalated DNA cast film is studied and found to show excellent tunable characteristics by Cu(2+) ions and ethylenediaminetetraacetic acid addition.  相似文献   

9.
The X-ray crystal structure of the complex rac-[Ru(5,6-dmp)(3)]Cl(2) (5,6-dmp = 5,6-dimethyl-1,10-phenanthroline) reveals a distorted octahedral coordination geometry with the Ru-N bond distances shorter than in its phen analogue. Absorption spectral titrations with CT DNA reveal that rac-[Ru(5,6-dmp)(3)](2+) interacts (K(b), (8.0 +/- 0.2) x 10(4) M(-1)) much more strongly than its phen analogue. The emission intensity of the 5,6-dmp complex is dramatically enhanced on binding to DNA, which is higher than that of the phen analogue. Also, interestingly, time-resolved emission measurements on the DNA-bound complex shows biexponential decay of the excited states with the lifetimes of short- and long-lived components being higher than those for the phen analogue. The CD spectral studies of rac-[Ru(5,6-dmp)(3)](2+) bound to CT DNA provide a definite and elegant evidence for the enantiospecific interaction of the complex with B-form DNA. Competitive DNA binding studies using rac-[Ru(phen)(3)](2+) provide support for the strong binding of the complex with DNA. The Delta-enantiomer of rac-[Ru(5,6-dmp)(3)](2+) binds specifically to the right-handed B-form of poly d(GC)(12) at lower ionic strength (0.05 M NaCl), and the Lambda-enantiomer binds specifically to the left-handed Z-form of poly d(GC)(12) generated by treating the B-form with 5 M NaCl. The strong electronic coupling of the DNA-bound complex with the unbound complex facilitates the change in its enantiospecificity upon changing the conformation of DNA. The (1)H NMR spectra of rac-[Ru(5,6-dmp)(3)](2+) bound to poly d(GC)(12) reveal that the complex closely interacts most possibly in the major grooves of DNA. Electrochemical studies using ITO electrode show that the 5,6-dmp complex stabilizes CT DNA from electrocatalytic oxidation of its guanine base more than the phen analogue does.  相似文献   

10.
A new Ru(II) complex of [Ru(phen)(2)(Hcdpq)](ClO(4))(2) {phen = 1,10-phenanthroline, Hcdpq = 2-carboxyldipyrido[3,2-f:2',3'-h]quinoxaline} was synthesized and characterized. The spectrophotometric pH and calf thymus DNA (ct-DNA) titrations showed that the complex acted as a dual molecular light switch for pH and ct-DNA with emission enhancement factors of 17 and 26, respectively. It was shown to be capable of distinguishing ct-DNA from yeast RNA with this binding selectivity being superior to two well-known DNA molecular light switches of [Ru(bpy)(2)(dppz)](2+) {bpy =2,2'-bipyridine, and dppz = dipyrido-[3,2-a:2',3'-c]phenazine}and ethidium bromide. The complex bond to ct-DNA probably in groove mode with a binding constant of (4.67 ± 0.06) × 10(3) M(-1) in 5 mM Tris-HCl, 50 mM NaCl (pH = 7.10) buffer solution, as evidenced by UV-visible absorption and luminescence titrations, the dependence of DNA binding constants on NaCl concentrations, DNA competitive binding with ethidium bromide, and emission lifetime and viscosity measurements. To get insight into the light-switch mechanism, theoretical calculations were also performed by applying density functional theory (DFT) and time-dependent DFT.  相似文献   

11.
The properties of two mononuclear Ru(II) complexes formed with the extended planar ligand PHEHAT depend drastically on the chelation site by the metallic ion. When the chelation takes place on the HAT site of the ligand (case of the novel complex [Ru(phen)2(HATPHE)]2+), the emission behavior is quite similar to that of [Ru(phen)2(HAT)]2+. In contrast, when the chelation is on the phen motif of the ligand (case of [Ru(phen)2(PHEHAT)]2+), the spectroscopic (absorption and emission) and electrochemical data for the complex do not obey the linear spectroelectrochemical correlation and the emission behavior is comparable to that of the extensively studied dppz complex ([Ru(phen/bpy)2(dppz)]2+). Thus, for [Ru(phen)2(PHEHAT)]2+, the emission lifetimes and intensities as a function of temperature exhibit a maximum for nitrile solvents. However, in contrast to the dppz case, at least three different states (two emitting and one dark) participate in the deactivation with different contributions depending on the temperature. These different contributions explain the observed maximum. Moreover, the fact that the solvent is liquid or frozen also influences the nature of the luminescent species.  相似文献   

12.
We here report our studies on the conjugation of photoreactive Ru(2+) complex to oligonucleotides (ODNs), which give a stable duplex with the complementary target DNA strand. These functionalized DNA duplexes bearing photoreactive Ru(2+) complex can be specifically photolyzed to give the reactive aqua derivative, [Ru(tpy)(dppz)(H(2)O)](2+)-ODN (tpy = 2,2':6',2' '-terpyridine; dppz = dipyrido[3,2-a:2',3'-c]phenazine), in situ, which successfully cross-links to give photoproduct(s) in the duplex form with the target complementary DNA strand. Thus, the stable precursor of the aquaruthenium complex, the monofunctional polypyridyl ruthenium complex [Ru(tpy)(dppz)(CH(3)CN)](2+), has been site-specifically tethered to ODN, for the first time, by both solid-phase synthesis and postsynthetic modifications. (i) In the first approach, pure 3'-[Ru(tpy)(dppz)(CH(3)CN)](2+)-ODN conjugate has been obtained in 42% overall yield (from the monomer blocks) by the automated solid-phase synthesis on a support labeled with [Ru(tpy)(dppz)Cl](+) complex with subsequent liberation of the crude conjugate from the support under mild conditions and displacement of the Cl(-) ligand by acetonitrile in the coordination sphere of the Ru(2+) label. (ii) In the second approach, the single-modified (3'- or 5'- or middle-modified) or 3',5'-bis-modified Ru(2+)-ODN conjugates were prepared in 28-50% yield by an amide bond formation between an active ester of the metal complex and the ODNs conjugated with an amino linker. The pure conjugates were characterized unambiguously by ultraviolet-visible (UV-vis) absorption spectroscopy, enzymatic digestion followed by HPLC quantitation, polyacrylamide gel electrophoresis (PAGE), and mass spectrometry (MALDI-TOF as well as by ESI). [Ru(tpy)(dppz)(CH(3)CN)](2+)-ODNs form highly stabilized ODN.DNA duplexes compared to the unlabeled counterpart (DeltaT(m) varies from 8.4 to 23.6 degrees C) as a result of intercalation of the dppz moiety; they undergo clean and selective photodissociation of the CH(3)CN ligand to give the corresponding aqua complex, [Ru(tpy)(dppz)(H(2)O)](2+)-ODNs (in the aqueous medium), which is evidenced from the change of their UV-vis absorption properties and the detection of the naked Ru(2+)-ODN ions generated in the course of the matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric analysis. Thus, when [Ru(tpy)(dppz)(CH(3)CN)](2+)-ODN conjugate was hybridized to the complementary guanine (G)-rich target strand (T), and photolyzed in a buffer (pH 6.8), the corresponding aqua complex formed in situ immediately reacted with the G residue of the opposite strand, giving the cross-linked product. The highest yield (34%) of the photo cross-linked product obtained was with the ODN carrying two reactive Ru(2+) centers at both 3'- and 5'-ends. For ODNs carrying only one Ru(2+) complex, the yield of the cross-linked adduct in the corresponding duplex is found to decrease in the following order: 3'-Ru(2+)-ODN (22%) > 5'-Ru(2+)-ODN (9%) > middle-Ru(2+)-ODN (7%). It was also found that the photo cross-coupling efficiency of the tethered Ru(2+) complex with the target T strand decreased as the stabilization of the resulting duplex increased: 3'-Ru(2+)-ODN (VI.T) (DeltaT(m)(b) = 7 degrees C) < 5'-Ru(2+)-ODN (V.T) (DeltaT(m)(b) = 16 degrees C) < middle-Ru(2+)-ODN (VII.T) (DeltaT(m)(b) = 24.3 degrees C, Table 2). This shows that, with the rigidly packed structure, as in the duplex with middle-Ru(2+)-ODN, the metal center flexibility is considerably reduced, and consequently the accessibility of target G residue by the aquaruthunium moiety becomes severely restricted, which results in a poor yield in the cross-coupling reaction. The cross-linked product was characterized by PAGE, followed by MALDI-TOF MS.  相似文献   

13.
The nature of the excited states of [Ru(bpy)2dppz]2+ has been investigated using density functional theory with the hybrid functional B3LYP. The excitations were studied via linear response theory (TDDFT) and DeltaSCF calculations and the solvent effects were introduced by embedding the molecule in a continuum dielectric medium. It was found that the solvent effects are critical in understanding the nature of the excitations. For the molecule in ethanol, the lowest absorption predicted by TDDFT is a dark state 3pi --> pi with the electron and hole spread over the dppz ligand. Next come the excitations of 3MLCT between the ruthenium and the dppz and finally the 3MLCT excitations between the ruthenium and the bpy ligands not associated with the phenazine. Using deltaSCF calculations two low-lying excited states were identified and the geometry optimized in the presence of the continuum medium. At the optimal geometry the lowest excited state is 3MLCT (Ru --> dppz). The 3pi --> pi state is found only 0.026 eV higher.  相似文献   

14.
The lowest excited state of [Ru(TAP)2(dppz)]2+ (TAP = 1,4,5,8-tetraazaphenanthrene, dppz = dipyrido[3,2-a:2',3'-c]phenazine) 1 is strongly luminescent, even in water, and very oxidizing. Therefore it is able to oxidise not only guanosine-5'-monophosphate (GMP), as demonstrated by laser flash photolysis, but also guanine-containing polynucleotides such as calf thymus DNA and [poly(dG-dC)]2. The luminescence quenching was found to be faster in H2O than in D2O, as is the back reaction, indicating that both processes probably proceed by proton-coupled electron transfer. These properties, that are controlled by the triplet MLCT state in which the charge has been transferred from the Ru to a TAP ligand, contrast with those of the well known [Ru(phen)2(dppz)]2+ 2.  相似文献   

15.
Combined Car-Parrinello and time-dependent DFT calculations performed on [Ru(phen)2dppz]2+ intercalated into an adenine-thymine tetramer reveal a remarkable influence of the base pairs in determining the electronic structure and the character of the excited states involved in the absorption and emission processes.  相似文献   

16.
New chiral Ru(II) complexes with intercalators L (L =o-npip, m-npip and p-npip) containing -NO2 at different positions on the phenyl ring were synthesized and characterized by elemental analysis, 1H NMR, ESI-MS and CD spectra. The DNA binding properties of these complexes have been investigated with UV-Vis, emission spectra, CD spectra and viscosity measurements. A subtle but detectable difference was observed in the interaction of these isomers with CT-DNA. Absorption spectroscopy experiments indicated that each of these complexes can interact with the DNA. The DNA-binding of the Delta-isomer is stronger than that of Lambda-isomer. DNA-viscosity experiments provided evidence that both Delta- and Lambda-[Ru(bpy)2(o-npip)](PF6)2 bind to DNA with partial intercalation, and both Delta- and Lambda-[Ru(bpy)(2)(p-npip)](PF6)2 fully intercalate with DNA. However, Delta- and Lambda- [Ru(bpy)2(m-npip)](PF6)2 bind to DNA through different modes, i.e., the Delta isomer by intercalation and Lambda isomer by partial intercalation. Under irradiation with UV light, Ru(II) complexes showed different efficiency of cleaving DNA. The most interesting feature is that neither 1 (Delta-1 and Lambda-1) nor 3 (Delta-3 and Lambda-3) emit luminescence either alone in aqueous solution or in the presence of DNA, whereas both Delta-2 and Lambda-2 emit luminescence under the same conditions. In addition, theoretical calculations for these three isomer complexes have been carried out applying the density functional theory (DFT) method at the level of the B3LYP/LanL2DZ basis set, and the calculated results can reasonably explain the obtained experimental trends in the DNA-binding affinities or binding constants (Kb) and some spectral properties of the complexes.  相似文献   

17.
The synthesis and the photophysical properties of the complex [Ru(TTF-dppz)(2)(Aqphen)](2+) (TTF = tetrathiafulvalene, dppz = dipyrido-[3,2-a:2',3'-c]phenazine, Aqphen = anthraquinone fused to phenanthroline via a pyrazine bridge) are described. In this molecular triad excitation into the metal-ligand charge transfer bands results in the creation of a long-lived charge separated state with TTF acting as electron donor and anthraquinone as terminal acceptor. The lifetime of the charge-separated state is 400 ns in dichloromethane at room temperature. A mechanism for the charge separation involving an intermediate charge-separated state is proposed based on transient absorption spectroscopy.  相似文献   

18.
The spectroscopic, electronic, and DNA-binding characteristics of two novel ruthenium complexes based on the dialkynyl ligands 2,3-bis(phenylethynyl)-1,4,8,9-tetraaza-triphenylene (bptt, 1) and 2,3-bis(4-tert-butyl-phenylethynyl)-1,4,8,9-tetraaza-triphenylene (tbptt, 2) have been investigated. Electronic structure calculations of bptt reveal that the frontier molecular orbitals are localized on the pyrazine-dialkynyl portion of the free ligand, a property that is reflected in a red shift of the lowest energy electronic transition (1: λ(max) = 393 nm) upon substitution at the terminal phenyl groups (2: λ(max) = 398 nm). Upon coordination to ruthenium, the low-energy ligand-centered transitions of 1 and 2 are retained, and metal-to-ligand charge transfer transitions (MLCT) centered at λ(max) = 450 nm are observed for [Ru(phen)(2)bptt](2+)(3) and [Ru(phen)(2)tbptt](2+)(4). The photophysical characteristics of 3 and 4 in ethanol closely parallel those observed for [Ru(bpy)(3)](2+) and [Ru(phen)(3)](2+), indicating that the MLCT excited state is primarily localized within the [Ru(phen)(3)](2+) manifold of 3 and 4, and is only sparingly affected by the extended conjugation of the bptt framework. In an aqueous environment, 3 and 4 possess notably small luminescence quantum yields (3: ?(H(2)O) = 0.005, 4: ?(H(2)O) = 0.011) and biexponential decay kinetics (3: τ(1) = 40 ns, τ(2) = 230 ns; 4: τ(1) ~ 26 ns, τ(2) = 150 ns). Addition of CT-DNA to an aqueous solution of 3 causes a significant increase in the luminescence quantum yield (?(DNA) = 0.045), while the quantum yield of 4 is relatively unaffected (?(DNA) = 0.013). The differential behavior demonstrates that tert-butyl substitution on the terminal phenyl groups inhibits the ability of 4 to intercalate with DNA. Such changes in intrinsic luminescence demonstrate that 3 binds to DNA via intercalation (K(b) = 3.3 × 10(4) M(-1)). The origin of this light switch behavior involves two competing (3)MLCT states similar to that of the extensively studied light switch molecule [Ru(phen)(2)dppz](2+). The solvent- and temperature-dependence of the luminescence of 3 reveal that the extended ligand aromaticity lowers the energy of the (3)ππ* excited state into competition with the emitting (3)MLCT state. Interconversion between these two states plays a significant role in the observed photophysics and is responsible for the dual emission in aqueous environments.  相似文献   

19.
Singh TN  Turro C 《Inorganic chemistry》2004,43(23):7260-7262
The ligand-loss photochemistry of cis-[Ru(bpy)(2)(NH(3))(2)](2+) (bpy = 2,2'-bipyridine) was investigated in water and in the presence of added ligands such as bipyridine and chloride. Irradiation of the complex results in the covalent binding to 9-methyl- and 9-ethylguanine, as well as to single-stranded and double-stranded DNA. This photoinduced DNA binding is not observed for the control complex [Ru(bpy)(2)(en)](2+) (en = ethylenediamine) under similar irradiation conditions. The results presented here show that octahedral Ru(II) complexes with photolabile ligands may prove useful as photoactivated cisplatin analogs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号