首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A hierarchical titanium dioxide microspheres-supported palladium catalyst (Pd/TiO2-350) was prepared and characterized using BET, XRD, XPS, SEM, EDX, and TEM analyses. An ICP-OES analysis of Pd/TiO2-350 further confirmed the successful Pd immobilization on TiO2 with a palladium loading of 0.1 mmol g?1. Pd/TiO2-350 efficiently catalyzed the Suzuki-Miyaura reaction of aryl iodides with arylboronic acids to give the corresponding biaryl derivatives in good to excellent yields. After the reaction, the catalyst was recovered by centrifugation and reused three times without significant loss of its catalytic activity. Moreover, the loading of palladium species further decreased to 0.001 mol%, and the total turnover number and turnover frequency of the catalyst reached as high as 99 000 and 0.57 s?1, respectively.  相似文献   

2.
In this study, a novel heterogeneous palladium catalyst was synthesized by anchoring palladium onto ethylenediaminetetraacetic acid (EDTA)‐coated Fe3O4@SiO2 magnetic nanocomposite and used for the Suzuki and Sonogashira cross‐coupling reactions. The properties of the magnetic catalyst were characterized by FT‐IR, XRD, TEM, FE‐SEM, DLS EDX, XPS, N2 adsorption‐desorption isotherm analysis, TGA, VSM, elemental analysis and the loading level of Pd in catalyst was measured to be 0.51 mmol/g by ICP. The catalyst was used in Suzuki cross‐coupling reactions of various aryl halides, including less reactive chlorobenzenes with phenylboronic acid without any additive or ligand under green conditions. Furthermore, we have reported this recyclable catalytic system for Sonogashira cross‐coupling reactions of various aryl halides (I, Br, Cl) under copper and ligand‐free conditions in the presence of DMF/H2O (1:2/v:v) as a solvent. The magnetic catalyst could also be separated by an external magnet and reused six times without any significant loss of activity.  相似文献   

3.
An efficient catalyst PdNPs decorated on Montmorillonite K 10 is prepared by simply stirring Pd(OAc)2 in methanol at room temperature without using any external reducing agent. The catalyst shows excellent activity for Suzuki Miyaura type cross coupling reaction between aryl diazonium salt and arylboronic acid under ligand and base free reaction conditions within short reaction time. The main advantage of this methodology is the easy synthesis of heterogeneous PdNPs @ Mont K 10 catalyst in a mild condition without using any reducing agent or additive and the catalyst is very efficient for biaryl synthesis. The catalyst is well characterized by SEM, EDX, TEM, BET, Powder XRD, TGA, DSC etc. The reaction pathway is greener with aqueous reaction medium, base free reaction condition, room temperature and reusable heterogeneous catalyst.  相似文献   

4.
《中国化学会会志》2018,65(7):875-882
Hollow Fe3O4@TiO2‐NH2/Pd as a light‐weight, magnetically heterogeneous catalyst was successfully prepared, and characterized by using different techniques including X‐ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX), vibrating sample magnetometer (VSM) measurements, and thermogravimetric analysis (TGA). Then this heterogeneous catalyst was tested in the Suzuki cross‐coupling reaction, and the results confirmed the success of this method. The catalyst could be separated easily using an external magnet and reused at least in five runs successfully without any appreciable loss in its catalytic activity.  相似文献   

5.
以废弃汽车外轮胎热解后的副产物轮胎热解焦(Tyre pyrolysis char,TPC)为原料,利用均匀沉淀法制备以轮胎焦为载体的负载型Ni/TPC催化剂,采用EDX、SEM、XRD、TG、BET手段对催化剂进行了表征与分析,同时使用管式炉测试了Ni/TPC催化剂在秸秆热解燃气重整中的催化性能,并考察了热解温度、保温时间、镍负载量及催化时间对秸秆热解燃气重整效果的影响。研究结果表明,TPC富含焦和金属,Ni/TPC催化剂分散均匀,热稳定性好,比表面积为62 m2/g。催化剂活性测试显示,Ni/TPC催化剂用于作物秸秆热解燃气重整具有很强的催化活性,可显著提高燃气中可燃气体含量;热解温度在750℃、保温时间10 min、30%的Ni负载量时Ni/TPC催化剂的催化效率最高,连续使用850 min后,燃气中的H2含量仍相对提高到50%以上,长时间使用后活性结构由Ni3ZnC0.7转变成FeNi3,催化活性依然较强且趋于稳定,TPC可以作为良好的新型镍基催化剂载体。  相似文献   

6.
The Suzuki coupling was carried out using a new, efficient and reusable polymer-supported Pd/IL catalyst (PEt@IL/Pd) under aqueous conditions. This catalyst was prepared through coacervation approach followed by treatment with Pd(OAc)2. The FT-IR, SEM, TGA, TEM, XPS, ICP and EDX techniques were employed to characterize the PEt@IL/Pd. This catalyst exhibited high activity in the Suzuki coupling reaction under green conditions. Moreover, the catalyst could be recycled and reapplied for six times with no appreciable loss in its activity. The leaching test also showed high stability of catalytic Pd species under applied conditions.  相似文献   

7.
An environmentally friendly palladium(II) catalyst supported on cyclodextrin‐modified h‐BN was successfully prepared. The catalyst was characterized by FT‐IR, SEM, TG, XRD and XPS, and the loading level of Pd in h‐BN@β‐CD@Pd(II) was measured to be 0.088 mmol g−1 by ICP. It exhibits excellent catalytic activity for the Suzuki and Heck reactions in water, and can be easily separated and consecutively reused for at least nine times. In addition, a series of pharmacologically interesting products were successfully synthesized using this catalyst to demonstrate its potential applications in pharmaceutical industries. Above all, this work opens up an interesting and attractive avenue for the use of cyclodextrin‐functionalized h‐BN as an efficient support for hydrophilic heterogeneous catalysts.  相似文献   

8.
The Pd nanoparticles (Pd NPs) embedded on magnetically retrievable carboxymethylcellulose/Fe3O4 (Pd0@CMC/Fe3O4) organic/inorganic hybrid were prepared via the conventional simple process. The presence of the hydroxyl and carboxyl groups within the framework of the magnetic hybrid enables the facile preparation and stabilization of Pd NPs in this organic/inorganic hybrid. This hybrid catalyst was very effective in the Suzuki – Miyaura reaction of a variety of aryl halides with arylboronic acid to afford excellent product yields. The catalyst showed good stability and could be easily recovered with an external magnetic field and reused for several times without a significant loss in its catalytic activity. Furthermore, the Pd0@CMC/Fe3O4 hybrid catalyst was fully characterized by UV–Vis, FT–IR, XRD, SEM, EDX, TEM, XPS and TGA techniques. The hot filtration test suggests that a homogeneous mechanism is operative in Suzuki – Miyaura reaction.  相似文献   

9.
An environmentally friendly silica‐grafted nicotine‐based palladium(II) complex was successfully prepared and evaluated for the first time as novel and efficient nanocatalyst in C‐C bond forming reactions. Grafted‐nicotine in this catalytic system plays an important role, and as an effective ligand and a quaternary ammonium salt demonstrates an efficient stabilizing effect on the Pd(II) species by a synergistic effect of coordination and electrostatic interactions. The catalyst was well characterized by FT‐IR, CHN, XRD, TEM, SEM–EDX, ICP and TG analysis, and demonstrated a highly efficient catalytic activity in the reaction system under phosphine‐free and low Pd loading conditions, and the coupled products were produced in good to excellent yields. Furthermore, the catalyst can be easily recovered and reused without a significant loss of activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A simple synthetic strategy of polyamide was described from melamine and terephalic acid via one‐step polycondensation. PdCl2 was then immobilized on the polyamide (denoted as Pd/MPA). Melamine and terephalic acid not only acted as monomers but also provided the ligand sites to help the polyamide to coordinate with Pd(II). The Pd/MPA catalyst was characterized by FT‐IR, TGA, SEM, TEM, XPS, N2 adsorption‐desorption and atomic absorption spectroscopy. The catalyst was used in Suzuki‐Miyaura coupling reaction of various aryl halides, including less reactive chlorobenzene and benzyl chloride, to give the coupling products in moderate to excellent yields. High turnover frequencies (TOF) up to 29400 h‐1 can be also obtained. In addition, it behaved truly as a heterogeneous catalyst with high reusability after being recycled 6 times and palladium leaching was negligible during the process. This work provides a practical polyamide support to develop heterogeneous palladium catalysts with simple synthetic procedure and low cost.  相似文献   

11.
Hybrid silica-based porous aerogels containing propylsulfonic acid and methyl functionalities were prepared by co-condensation route from the corresponding mercaptopropyltriethoxysilane and methyltriethoxysilane precursors using aqueous ammonia as hydrolyzing agent in the absence of any organic templates. The hybrid aerogel was dried under supercritical CO2 and characterized by SEM, TEM, 13C CP-MAS NMR, 29Si MAS NMR, TG/DTA, and nitrogen adsorption/desorption analyses. The hybrid-silica aerogel containing propylsulfonic acid serves as an efficient heterogeneous acid catalyst in transesterification of fatty acid esters with methanol in a batch reactor.  相似文献   

12.
Because of the intrinsic advantages, Suzuki coupling reactions have been one of the most popular coupling reactions in organic synthesis, however developing a high-performance heterogeneous catalyst for Suzuki coupling reactions in aqueous media at low temperature (e.g. room temperature) is still a challenge. Herein, a heterogeneous catalyst with coordinated Pd as active site and a designed conjugated phenanthroline based porous polymer (CPP) as support was fabricated. Systematically investigation on CPP support by Fourier transform infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Transmission electron microscopy (TEM), N2 adsorption–desorption isotherm and Scanning electron microscopy (SEM) show that the derived CPP catalyst support owns a porous structure, moderately good surface area (141 m2/g) and an excellent thermal stability. As a heterogeneous catalyst for the synthesis of biphenyl derivatives via Suzuki coupling, Pd/CPP achieves an excellent catalytic performance and recycling ability towards Suzuki reaction of various reactants at room temperature in ethanol-water medium.  相似文献   

13.
The present work describes the use of Pd(0)‐ S‐propyl‐2‐aminobenzothioate Complex immobilized onto functionalized magnetic nanoporous MCM‐41(Fe3O4@MCM‐41@Pd‐SPATB) as efficient and recyclable nano‐organometallic catalyst for C–C bond formation between various aryl halides with phenylboronic acid (Suzuki reaction), aryl halides with triphenyltin chloride (Stille reaction), and aryl halides with n‐butyl acrylate (Heck reaction). All the reactions were carried out in PEG‐400 as green solvent with short reaction time and good to excellent yields. This catalyst was characterized by FT‐IR spectroscopy, XRD, TGA, VSM, ICP‐OES, TEM, EDX and SEM techniques. Ease of operation, high efficiency, recovery and reusability for five continuous cycles without significant loss of its catalytic activities or metal leaching are the noteworthy features of the currently employed heterogeneous catalytic system.  相似文献   

14.
《Comptes Rendus Chimie》2017,20(2):107-115
Palladium nanoparticles (Pd-NPs) were supported on functional and nonfunctional Co-coordination polymers (Pd/CoBDCNH2 and Pd/CoBDC). Advanced analytical techniques revealed that Pd-NPs are supported on the external surface of the polymer framework and the functionalized framework possesses effective influence to prevent Pd-NP aggregation. Supported Pd-NPs were effectively applied as heterogeneous recyclable catalysts in the Mizoroki–Heck C–C cross coupling reactions of iodobenzene and either aromatic or aliphatic terminal alkenes. Catalytic results exhibited that highly dispersed Pd-NPs with low loading (1%) on the functional polymer (Pd/CoBDCNH2) are more effective than aggregated Pd-NPs with high loading (9%) on the nonfunctional polymer (Pd/CoBDC). Both catalysts can simultaneously provide high activity and selectivity to E-coupled products, high efficiency in low amounts, easy separation of heterogeneous catalyst and appropriate performance in the recycling reaction without addition of a reducing agent.  相似文献   

15.
In this study, magnetic nitrogen‐doped carbon (MNC) was fabricated through facile carbonization and activation of natural silk cocoons containing nitrogen and then combined with Fe3O4 nanoparticles to create a good support material for palladium. Palladium immobilization on the support resulted in the formation of magnetic nitrogen‐doped carbon‐Pd (MNC‐Pd). The prepared heterogeneous catalyst was well characterized using FT‐IR, TGA, EDX, FE‐SEM, XRD, VSM, and ICP‐OES techniques. Thereafter, the synthesis of biaryl compounds was conducted to investigate the catalyst performance via the reaction of aryl halides and phenylboronic acid. Further, the catalyst could be used and recycled for six consecutive runs without any significant loss in its activity.  相似文献   

16.
《Mendeleev Communications》2023,33(2):177-179
The set of heterogeneous Pd catalysts containing different forms of Pd (PdCl42– or Pd0) was prepared by chemical modification and laser electrodispersion using two types of + supports, namely, SiO2 modified by ionic liquid and γ-Al2O3. Testing of the synthesized catalysts in the Suzuki–Miyaura reaction with aryl bromides pointed out the possibility to achieve the prominent TOF and TON values. The dependencies of TOF on the catalyst loading indicate that only a fraction of loaded Pd was involved in the catalysis.  相似文献   

17.
A novel carbon‐titania composite material, C/TiO2, has been prepared by growing carbon nanofibers (CNFs) on TiO2 surface via methane decomposition using Ni‐Cu as a catalyst. The C/TiO2 was used for preparing supported palladium catalyst, Pd/C/TiO2. The support and Pd/C/TiO2 catalyst were characterized by BET, SEM, XRD and TG‐DTG. Its catalytic performance was evaluated in selective hydrogenation of citral to citronellal, and compared with that of activated carbon supported Pd catalyst. It was found that the Pd/C/TiO2 catalyst contains 97% of mesopores. And it exhibited 88% of selectivity to citronellal at citral conversion of 90% in citral hydrogenation, which was much higher than that of activated carbon supported Pd catalyst. This result may be attributed to elimination of internal diffusion limitations, which were significant in activated carbon supported Pd catalyst, due to its microporous structure.  相似文献   

18.
The hollow Pd–PVP–Fe nanosphere and Fe–PVP nanoparticle catalysts were synthesized by thermal method. Mixing of two metallic nanocatalysts was applied in the Csp–S cross-coupling reactions between diphenyl disulfide and phenylacetylene under mild conditions in water. Results show that bi-catalytic system has higher catalytic efficiencies than their monocatalytic systems due to synergy between two catalysts. Order of adding two metallic catalysts were adjusted into the coupling reaction medium. Therefore, various bi-catalytic systems were obtained and characterized by XRD, SEM, EBSD, EDX, UV–Vis spectra, and particle size analyzer. Under special order of adding, the obtained hollow nanoshell-sphere Fe@Fe/Pd reactor showed higher catalytic activity in the coupling reaction compared to other bi-catalytic systems. The Csp–S coupling products obtained of various diaryl disulfides and phenylacetylene at presence Fe@Fe/Pd (only 7.3?×?10?5 mmol Pd) catalyst with moderate to high yields in water solvent and mild reaction conditions. After the reaction, the catalyst/product(s) separation could be easily achieved with an external magnet and more than 95% of catalyst could be recovered. The recovered catalyst was characterized by XRD, SEM, EBSD, EDX, and UV–Vis spectra. The Fe@Fe/Pd was reused at least six repeating cycles without any loss of its high catalytic activity. Tuning morphology and chemical composition of bi-catalytic system are key mainstays of high activity of Fe@Fe/Pd in repeating cycles of cross-coupling reactions.  相似文献   

19.
In this article, a CaO-based catalyst was prepared by impregnating chloride salts on CaO to develop a highly efficient heterogeneous catalyst for the synthesis of glycerol carbonate (GC) from glycerol and dimethyl carbonate. LiCl/CaO exhibited a high catalytic activity under moderate reaction conditions. The effects of the LiCl loadings, the amount of catalyst and the calcination temperature on the catalytic activity were investigated. The highest yield of 94.19% glycerol carbonate was obtained at 65 °C on CaO loaded with 10% LiCl after 1 h, and the catalyst had high stability in reusing work. Scanning electron microscopy (SEM), X-ray diffraction (XRD), BET, CO2-TPD, XPS and thermalgravity (TG) were used to characterize the prepared catalyst. It was found that the high catalytic activity of CaO after modification with LiCl is associated with the structural aspects and the amount of basicity of the catalyst. The Li2O2 species, which is a strong basic site that is formed by the substitution of the Ca2+ in CaO lattice by Li+, has great activity for transesterification.  相似文献   

20.
制备了新型Pd(P-Phos)Cl2配合物, 并通过1H, 13C和31P核磁共振及X射线单晶衍射对其结构进行了确认及表征. 结果表明, 该配合物是室温有氧条件下Suzuki-Miyaura交叉偶联反应的高稳定高效催化剂, 并具有广泛的底物适用性. 催化剂用量较低, 且转化数(TON)最高可达49000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号