首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
We present a generalized version of the tight-binding approach to determine the electronic coupling parameter in charge (hole) transport phenomena in organic materials. The main novelty of this approach is that the "embedding effects" of the environment (either a solvent or a crystal packing) can be explicitly included in the calculation by considering an embedded dimer. One of the main features shown by the application of the method to both model systems and oligoacene crystals is that the routinely used "energy splitting in a dimer" approximation gives reasonable results even if the transfer units are not equivalent by symmetry but the embedding effects are properly taken into account.  相似文献   

2.
The intramolecular electronic structures and intermolecular electronic interactions of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene), 6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]-pentacene (TP-5 pentacene), and 2,2,10,10-tetraethyl-6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]pentacene (EtTP-5 pentacene) have been investigated by the combination of gas-phase and solid-phase photoelectron spectroscopy measurements. Further insight has been provided by electrochemical measurements in solution, and the principles that emerge are supported by electronic structure calculations. The measurements show that the energies of electron transfer such as the reorganization energies, ionization energies, charge-injection barriers, polarization energies, and HOMO-LUMO energy gaps are strongly dependent on the particular functionalization of the pentacene core. The ionization energy trends as a function of the substitution observed for molecules in the gas phase are not reproduced in measurements of the molecules in the condensed phase due to polarization effects in the solid. The electronic behavior of these materials is impacted less by the direct substituent electronic effects on the individual molecules than by the indirect consequences of substituent effects on the intermolecular interactions. The ionization energies as a function of film thickness give information on the relative electrical conductivity of the films, and all three molecules show different material behavior. The stronger intermolecular interactions in TP-5 pentacene films lead to better charge transfer properties versus those in TIPS pentacene films, and EtTP-5 pentacene films have very weak intermolecular interactions and the poorest charge transfer properties of these molecules.  相似文献   

3.
The interaction energy of several conformations of the nitromethane dimer is investigated at the SCF level. The dispersion energy and counterpoise correction are computed for certain relative orientations of the monomers. Fourth-order many body perturbation theory SDQ-MBPT(4) energies are reported for selected points. Double zeta and double zeta plus polarization basis sets were used. All calculations were done with the monomer fixed at the isolated monomer geometry. Interaction energies as large as 6 kcal/mol are found at minima of hydrogen bonding orientations.  相似文献   

4.
5.
The charge‐transport properties of the one‐dimensional stacking metal phthalocyanine iodides (M(Pc)I, M = Fe, Co, Ni, Cu) and metal‐free phthalocyanine iodide (H2(Pc)I) have been theoretically investigated. On the basis of the tight‐binding approximation and two‐state theory, both the site‐energy corrected energy splitting in dimer and Fock‐matrix‐based methods are used to calculate the transfer integral. The intermolecular motions, including interplanar translation, rotation, slip, and tilt, exert remarkable impacts on the transfer integral. The order/disorder of the dopant stack and the long‐range electrostatic interactions are also demonstrated to be crucial factors for modulation of charge‐transport properties. The transfer integral undergoes slight changes under an applied electric field along the stacking direction in the range of 106 ? 107 V cm?1. The change of central metals in MPc has little effect on the transfer integrals, but significantly affects the reorganization energies. The extension of the π‐conjugation in macrocyclic ligand brings about considerable influence on the transfer integrals. Peripheral substitutions by animo, hydroxyl, and methyl lead to deviations from planarity of macromolecular rings, and hence affect the valence bands significantly. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

6.
Singlet fission duplicates triplet excitons for improving light harvesting efficiency. The presence of the interaction between electronic and nuclear degrees of freedom complicates the interpretation of correlated triplet pairs. We report a quantum chemistry study on the significance and subtleties of multistate and multimode pathways in forming triplet pair states of the pentacene dimer through a six-state vibronic-coupling Hamiltonian derived from many-electron adiabatic wavefunctions of an ab initio density matrix renormalization group. The resulting spin values of the singlet manifolds on each pentacene center are computed, and the varying spin nature can be distinguished clearly with respect to dimer stacking and vibronic progression. Our monomer spin assignments reveal the coexistence of both lower-lying weak and higher-lying strong charge transfer states which interact vibronically with the triplet pair state, providing important implications for its generation and separation occurring in vibronic regions. This work conveys the importance of the many-electron process requiring close low-lying singlet manifolds to determine the subtle fission details, and represents an important step for understanding vibronically resolved spin states and conversions underlying efficient singlet fission.

Singlet fission in pentacene necessitates the vibronic progression of weak and strong charge-transfer states with correlated triplet pairs.  相似文献   

7.
cis-syn Cyclobutane pyrimidine dimers, major UV-induced DNA lesions, are efficiently repaired by DNA photolyases. The key step of the repair reaction is a light-driven electron transfer from the FADH(-) cofactor to the dimer; the resulting radical anion splits spontaneously. Whether the splitting reaction requires considerable activation energy is still under dispute. Recent reports show that the splitting reaction of a dimer radical anion has a significant activation barrier (0.45 eV), and so photolyases have to provide considerable energy. However, these results contradict observations that cis-syn dimer radical anions split into monomers at -196 degrees C, and that the full process of DNA photoreactivation was fast (1.5-2 ns). To investigate the activation energies of dimer radical anions, three model compounds 1-3 were prepared. These include a covalently linked cyclobutane thymine dimer and a tryptophan residue (1) or a flavin unit (3), and the covalently linked uracil dimer and tryptophan (2). Their properties of photosensitised splitting of the dimer units by tryptophan or flavin unit were investigated over a large temperature range, -196 to 70 degrees C. The activation energies were obtained from the temperature dependency of splitting reactions for 1 and 2, 1.9 kJ mol(-1) and 0.9 kJ mol(-1) for the thymine and uracil dimer radical anions, respectively. These values are much lower than that obtained for E. coli photolyase (0.45 eV), and are surmountable at -196 degrees C. The activation energies provide support for previous observations that repair efficiencies for uracil dimers are higher than thymine dimers, both in enzymatic and model systems. The mechanisms of highly efficient enzymatic DNA repair are discussed.  相似文献   

8.
Electronic polarization has an important impact on the site energies of charge carriers that play a key role in determining the charge transport in organic semiconductors.Dipolar molecules have strong intermolecular interactions and widespread applications in organic optoelectronics.Howeve r,compared with nonpolar organic semiconductors,electronic polarization for dipolar systems has been rarely studied.Here,taking 1,2,3,4-tetrafluoro-6,7-dimethylnaphthalene as representative,we have calculated the electronic polarization energies of dipolar organic molecular crystals by means of a polarizable forcefield method.Surprisingly,our results point to that the polarization energies for this dipolar system are similar to those of nonpolar systems.In addition,theπ-πstack contributes only about 30%~40%to the total polarization energy,thus the polarization effects along the three dimensions should be treated equally even for the one-dimensional stacking crystals.  相似文献   

9.
We investigate the effect of structural fluctuations on charge transfer integrals, overlap integrals, and site energies in a system of two stacked molecular 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6), which is a model system for conducting devices in organic photocell applications. A density functional based computational study is reported. Accurate potential energy surface calculations are carried out using an improved meta-hybrid density functional to determine the most stable configuration of the two weakly bound HAT6 molecules. The equilibrium parameters in terms of the twist angle and co-facial separation are calculated. Adopting the fragment approach within the Kohn–Sham density functional framework, these parameters are combined to a lateral slide, to mimic structural/conformational fluctuations and variations in the columnar phase. The charge transfer and spatial overlap integrals, and site energies, which form the matrix element of the Kohn–Sham Hamiltonian are derived. It is found that these quantities are strongly affected by the conformational variations. The spatial overlap between stacked molecules is found to be of considerable importance since charge transfer integrals obtained using the fragment approach differ significantly from those using the dimer approach.  相似文献   

10.
The light-induced splitting of pyrimidine dimers was studied using the electron acceptor anthraquinone-2-sulfonate (AQS) as a photosensitizer. To this end, photochemically induced dynamic nuclear polarization (photo-CIDNP) experiments were performed on a series of pyrimidine monomers and dimers. The CIDNP spectra demonstrate the existence of both the dimer radical cation, which is formed by electron transfer from the dimer to the photoexcited sensitizer AQS*, and its dissociation product, the monomer radical cation. In spectra of 1,1′-trimethylene bridged cis,syn pyrimidine dimers, polarization is observed that originates from a spin-sorting process in the dimer radical pair. This points to a relatively long lifetime of the dimer radical cation involved, which is presumably due to stabilization by the trimethylene bridge. Polarization originating from a dimer radical pair is detected in the spectrum of trans,anti (1,3-dimethyluracil) dimer as well. The spectra of the bridged pyrimidines also demonstrate the reversibility of the dissociation of dimer radical cation into monomer radical cation, which is concluded from the observation of polarization in the dimer as a result of spin sorting in the monomer radical pair.  相似文献   

11.
Heterofission is a photophysical process of fundamental and applied interest whereby an excited singlet state is converted into two triplets on chemically distinct chromophores. The potential of this process lies in the tuning of both the optical band gap and the splitting between singlet and triplet energies. Herein, we report the time-domain observation of heterofission in mixed thin films of the prototypical singlet fission chromophores pentacene and tetracene using excitation wavelengths above and below the tetracene band gap. We found a time constant of 26 ps for endothermic heterofission of a singlet exciton on pentacene in blends with low pentacene fractions, which was outcompeted by pentacene homofission for increasing pentacene concentrations. Direct excitation of tetracene lead to fast energy transfer to pentacene and subsequent singlet fission, which prevented homo- or heterofission of a singlet exciton on tetracene.  相似文献   

12.
Characterization of the electronically polarized environment and the nuclear relaxation that accompanies charge carriers is fundamental to charge transport in crystalline, polycrystalline, and amorphous organic solids. To study the polarization effects of localized charged carriers, we use quantum/classical QM/MM approaches with charge redistribution and polarizable force field schemes and apply them to crystals of naphthalene through pentacene. We describe the results of a comprehensive investigation of the electronic polarization energies in molecular crystal structures of these oligoacenes and discuss as well the evolution of the nuclear relaxation energies calculated for model oligoacene systems.  相似文献   

13.
应用密度泛函理论的B3LYP/6-311+G(d)方法研究了6-甲基-4-羟基嘧啶单体及二聚体质子转移的异构化反应.对反应势能面的研究发现,该化含物可能存在9种单体异构体,对其最稳定的单体构型进行分析.各单体间异构化反应的过渡态共有9种,反应的活化能最小为22.06 kJ/mol,最大为356.55 kJ/mol,最可能的反应路径在室温下即可进行. 研究了2种二聚体及其异构化反应的过渡态,发现二聚体均比其对应的单体稳定,而且质子转移所需要的活化能仅为20.13 kJ/mol,比单体低很多. 氢键在这种变化中起了主要作用,由单体和二聚体的总能量计算了氢键的键能.  相似文献   

14.
The theoretical work presented here demonstrates that, when substitution takes place at appropriate positions, cyanation could be a useful tool for reducing the internal reorganization energy of molecules. A molecular-orbital-based explanation is given for this fundamentally important phenomenon. Some of the cyanated pentacene derivatives (nCN-PENT-n) not only have internal reorganization energies for electron transfer (lambda(-)) smaller than that of pentacene, but the lambda(-) values are even of the same magnitude as the internal reorganization energy for hole transfer (lambda(+)) of pentacene, a small value that few organic compounds have surpassed. In addition, cyanation raises the electron affinity of the parent compound and may afford good electronic couplings between neighboring molecules, because of its ability in promoting pi-stacking. For the design of high performance n-Type Organic field-effect transistors, high electron affinities, large intermolecular electronic couplings, and small reorganization energies are necessary. Cyanation may help in all three aspects. Two cyanated trialkylsilylethynyl pentacene derivatives with known pi-stacking structures are predicted to provide reasonably small internal reorganization energies, large electronic couplings, and high electron affinities. They have the potential to outperform N-fluoroalkylated dicyanoperylene-3,4:9,10-bis(dicarboximides) (PDI-FCN(2)) in terms of electron mobility.  相似文献   

15.
The general methods of deriving the extended Hartree–Fock equations are described. The rules for going over from the energy expression in the ordinary method of calculation to that in an extended one are reformulated and illustrated. The extended Hartree—Fock equations for berylliumlike atomic systems based on the use of nonorthogonal radial orbitals are given and solved. The numerical values of overlap integrals and total energies are given and discussed.  相似文献   

16.
A simple yet accurate method for calculating electrostatic potentials using the boundary element continuum dielectric method is presented. It is shown that the limiting factor in accuracy is not the evaluation of integrals involving the interaction between boundary elements but rather a proper estimation of the self-polarization of a patch upon itself. We derive a sum rule that allows us to calculate this important self-polarization term in a self-consistent and simple way. Intricate integration schemes used in previous treatments are consequently rendered unnecessary while concurrently achieving at least comparable accuracy over earlier methods. In some model systems for which analytic solutions are available, the computed surface polarization charge and reaction field energy are correct to better than six significant figures. An application of the method to the calculation of hydration free energies is presented. Good agreement with experimental values is obtained.  相似文献   

17.
Recently, three of us have proposed a method [Phys. Rev. Lett. 91, 33201 (2003)] for an accurate calculation of the dispersion energy utilizing frequency-dependent density susceptibilities of monomers obtained from time-dependent density-functional theory (DFT). In the present paper, we report numerical calculations for the helium, neon, water, and carbon dioxide dimers and show that for a wide range of intermonomer separations, including the van der Waals and short-range repulsion regions, the method provides dispersion energies with accuracies comparable to those that can be achieved using the current most sophisticated wave-function methods. If the dispersion energy is combined with (i) the electrostatic and first-order exchange interaction energies as defined in symmetry-adapted perturbation theory (SAPT) but computed using monomer Kohn-Sham (KS) determinants, and (ii) the induction energy computed using the coupled KS static response theory, (iii) the exchange-induction and exchange-dispersion energies computed using KS orbitals and orbital energies, the resulting method, denoted by SAPT(DFT), produces very accurate total interaction potentials. For the helium dimer, the only system with nearly exact benchmark values, SAPT(DFT) reproduces the interaction energy to within about 2% at the minimum and to a similar accuracy for all other distances ranging from the strongly repulsive to the asymptotic region. For the remaining systems investigated by us, the quality of the SAPT(DFT) interaction energies is so high that these energies may actually be more accurate than the best available results obtained with wave-function techniques. At the same time, SAPT(DFT) is much more computationally efficient than any method previously used for calculating the dispersion and other interaction energy components at this level of accuracy.  相似文献   

18.
The structure and stability of different forms of salicylic acid dimer have been examined by Hartree-Fock and density functional theoretic calculations using 6-31G(d,p) and 6-311++g(d,p) basis sets. Vertical excitation energies for the monomer as well as the dimer have been computed using the time-dependent density functional theory using 6-311++G(d,p) basis set. The predicted absorption maxima for the first excited singlet state of salicylic acid monomer and the dimer of the primary form are in reasonable agreement with the experimental result. There is a slight red shift (approximately 6 nm) in the absorption maximum in going from the monomer to the dimer, in accord with the experimental observation. Configuration-interaction calculations including single excitation have been carried out to map the potential-energy profile for the intra- as well as the intermolecular proton transfer in different forms of the dimer. The barrier for proton transfer in the ground state as well as the excited states makes it clear that most of the processes take place in the primary form and largely by intramolecular proton transfer.  相似文献   

19.
20.
A method for the calculation of the two-body intermolecular potential which can be applied to large molecules is presented. Each monomer is fragmented in a number of moieties whose interaction energies are used to recover the interaction energy of the whole dimer. For these reasons this strategy has been called fragmentation reconstruction method (FRM). By a judicious choice of the fragmentation scheme it is shown that very accurate interaction energies can be obtained. The sampling of the potential energy surface of a dimer is then used to obtain intermolecular force fields at several levels of complexity, suitable to be employed in bulk phase computer simulations. Applications are presented for benzene and for some mesogenic molecules which constitute the principal interest of the authors. A number of properties ranging from phase stability, thermodynamic quantities, orientational order parameter and collective dynamics properties are computed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号