首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an extension of the Tomonaga-Luttinger model in which left and right-moving particles have different Fermi velocities. We derive expressions for one-particle Green's functions, momentum-distributions, density of states, charge compressibility and conductivity as functions of both the velocity difference ε and the strength of the interaction β. This allows us to identify a novel restricted region in the parameter space in which the system keeps the main features of a Luttinger liquid but with an unusual behavior of the density of states and the static charge compressibility κ. In particular κ diverges on the boundary of the restricted region, indicating the occurrence of a phase transition. Received 20 May 2002 / Received in final form 23 August 2002 Published online 19 November 2002  相似文献   

2.
We report a microwave study of the longitudinal and transverse transport properties of the quasi-one-dimensional organic conductor (TMTSF)2PF6 in its normal phase. The contactless technique have provided a direct measurement of the temperature profile of the resistivity along the b' direction and in magnetic fields up to 14 T. A characteristic energy scale ( K) has been observed which delimits a transient regime from an insulating to a metallic behavior. This anomalous profile is discussed in terms of the onset of coherent transport properties along the b' direction below 40 K. This is also supported by the observation of a finite longitudinal and transverse magnetoresistances only below 40 K, indicative of a two-dimensional regime. Below Tx, however, strong deviations with respect to a Fermi liquid behavior are evidenced. Received 27 January 1999  相似文献   

3.
We reconsider the theory of the half-filled lowest Landau level using the Chern-Simons formulation and study the grand-canonical potential in the random-phase approximation (RPA). Calculating the unperturbed response functions for current- and charge-density exactly, without any expansion with respect to frequency or wave vector, we find that the integral for the ground-state energy converges rapidly (algebraically) at large wave vectors k, but exhibits a logarithmic divergence at small k. This divergence originates in the k-2 singularity of the Chern-Simons interaction and it is already present in lowest-order perturbation theory. A similar divergence appears in the chemical potential. Beyond the RPA, we identify diagrams for the grand-canonical potential (ladder-type, maximally crossed, or a combination of both) which diverge with powers of the logarithm. We expand our result for the RPA ground-state energy in the strength of the Coulomb interaction. The linear term is finite and its value compares well with numerical simulations of interacting electrons in the lowest Landau level. Received: 19 February 1998 / Revised: 25 March 1998 / Accepted: 17 April 1998  相似文献   

4.
CuGeO3 exhibits a Spin-Peierls (SP) transition, at T SP = 14.3 K, which is announced above 19 K by an important regime of one-dimensional (1D) pretransitional lattice fluctuations which can be detected until about 40 K using X-ray diffuse scattering investigations. A quantitative analysis of this scattering shows that in this 1D direction the correlation length follows the “universal” behaviour expected for the thermal fluctuations of a real order parameter which characterizes the lattice dimerization. This allows to define a 1D mean-field temperature, T SP MF , of about 60 K and invalidates any mean field scenario for the SP transition of CuGeO3. As T SP MF is as high as 4 T SP we propose that the 3D-SP order is achieved by the interchain coupling between 1D solitons which form below about 16-20 K. CuGeO3 being in the non-adiabatic regime, it is also suggested that the observed pretransitional fluctuations of CuGeO3 originate from the X-ray scattering on a very broad damped critical response of lower frequency than the “critical” phonon modes. From the quantitative analysis of the 1D fluctuations we also estimate the microscopic parameters of the SP chain. These parameters allow to locate CuGeO3 close to the quantum critical boundary separating the gapped SP ground state to the ungapped anti-ferromagnetic ground state. The vicinity of a quantum critical point emphasizes the role of the quantum and non-adiabatic fluctuations and the importance of the interchain coupling in the physics of CuGeO3. Finally we compare these findings with those obtained for the organic SP systems (BCPTTF)2PF6, (TMTTF)2PF6 and MEM(TCNQ)2. From a similar analysis of the pretransitional lattice fluctuations it is found that (BCPTTF)2PF6 and (TMTTF)2PF6 are located on the SP gapped classical-quantum boundary and are in the adiabatic regime where the fluctuations lead to the formation of a pseudo-gap in the spin degrees of freedom. Differently, we place MEM(TCNQ)2 inside the SP quantum phase around the crossover line between the adiabatic and non-adiabatic regimes. Received 13 September 2000 and Received in final form 6 February 2001  相似文献   

5.
The experimentally observed filling factors of the fractional quantum Hall effect can be described in terms of the composite fermion wave function of the Jastrow-Slater form [0pt] fully projected into the lowest Landau level. The Slater determinant of the above composite fermion wave function represents the filled Landau levels of composite fermions evaluated at the corresponding reduced magnetic field. For a system of fermions studied in the thermodynamic limit, we prove that in the even-denominator-filled state limit (when the number of filled Landau levels of composite fermions becomes infinite), the above composite fermion wave function exactly transforms into the Rezayi-Read Fermi-sea-like wave function [0pt] constructed by attaching 2m flux quanta to the Slater determinant of two-dimensional free fermions at the density corresponding to that filling. We study the composite fermion wave function and its evolution into the Fermi-sea-like wave function for a range of filling factors very close to the even-denominator-filled state. Received 19 March 1999  相似文献   

6.
We present a study of the one-particle spectral properties for a variety of models of Luttinger liquids with open boundaries. We first consider the Tomonaga-Luttinger model using bosonization. For weak interactions the boundary exponent of the power-law suppression of the spectral weight close to the chemical potential is dominated by a term linear in the interaction. This motivates us to study the spectral properties also within the Hartree-Fock approximation. It already gives power-law behavior and qualitative agreement with the exact spectral function. For the lattice model of spinless fermions and the Hubbard model we present numerically exact results obtained using the density-matrix renormalization-group algorithm. We show that many aspects of the behavior of the spectral function close to the boundary can again be understood within the Hartree-Fock approximation. For the repulsive Hubbard model with interaction U the spectral weight is enhanced in a large energy range around the chemical potential. At smaller energies a power-law suppression, as predicted by bosonization, sets in. We present an analytical discussion of the crossover and show that for small U it occurs at energies exponentially (in -1/U) close to the chemical potential, i.e. that bosonization only holds on exponentially small energy scales. We show that such a crossover can also be found in other models. Received 8 February 2000 and Received in final form 25 April 2000  相似文献   

7.
We calculate the damping γq of collective density oscillations (zero sound) in a one-dimensional Fermi gas with dimensionless forward scattering interaction F and quadratic energy dispersion k2 / 2 m at zero temperature. Using standard many-body perturbation theory, we obtain γq from the expansion of the inverse irreducible polarization to first order in the effective screened (RPA) interaction. For wave-vectors | q| /kF ≪F (where kF = m vF is the Fermi wave-vector) we find to leading order γq ∝| q |3 /(vF m2). On the other hand, for F ≪| q| /kF most of the spectral weight is carried by the particle-hole continuum, which is distributed over a frequency interval of the order of q2/m. We also show that zero sound damping leads to a finite maximum proportional to |k - kF | -2 + 2 η of the charge peak in the single-particle spectral function, where η is the anomalous dimension. Our prediction agrees with photoemission data for the blue bronze K0.3MoO3. We comment on other recent calculations of γq.  相似文献   

8.
We consider the asymptotic behaviour of the Chern-Simons Green's function of the ν = 1/ system for an infinite area in position-time representation. We calculate explicitly the asymptotic form of the Green's function of the interaction free Chern-Simons system for small times. The calculated Green's function vanishes exponentially with the logarithm of the area. Furthermore, we discuss the form of the divergence for all τ and also for the Coulomb interacting Chern-Simons system. We compare the asymptotics of the exact Chern-Simons Green's function with the asymptotics of the Green's function in the Hartree-Fock as well as the random-phase approximation (RPA). The asymptotics of the Hartree-Fock Green's function correspondence well with the exact Green's function. In the case of the RPA Green's function we do not get the correct asymptotics. At last, we calculate the self consistent Hartree-Fock Green's function. Received 5 July 2001 and Received in final form 30 November 2001  相似文献   

9.
The temperature-dependent uniform magnetic susceptibility of interacting electrons in one dimension is calculated using several methods. At low temperature, the renormalization group reveals that the Luttinger liquid spin susceptibility approaches zero temperature with an infinite slope in striking contrast with the Fermi liquid result and with the behavior of the compressibility in the absence of umklapp scattering. This effect comes from the leading marginally irrelevant operator, in analogy with the Heisenberg spin 1/2 antiferromagnetic chain. Comparisons with Monte Carlo simulations at higher temperature reveal that non-logarithmic terms are important in that regime. These contributions are evaluated from an effective interaction that includes the same set of diagrams as those that give the leading logarithmic terms in the renormalization group approach. Comments on the third law of thermodynamics as well as reasons for the failure of approaches that work in higher dimensions are given. Received 2 March 1999  相似文献   

10.
We consider the energy density of a spin polarized ν = 1/2 system for low temperatures. We show that due to the elimination of the magnetic field and the field of the positive background charge in the calculation of the grand canonical potential of Chern-Simons systems through a mean field formalism one gets corrections to the well known equations which determine the chemical potential and the energy from the grand canonical potential. We use these corrected equations to calculate the chemical potential and the energy of the ν = 1/2 system at low temperatures in two different approximations. Received 14 March 2001  相似文献   

11.
We present a new finite-temperature quantum Monte Carlo algorithm to compute imaginary-time Green functions for a single hole in the t-J model on non-frustrated lattices. Spectral functions are obtained with the Maximum Entropy method. Simulations of the one-dimensional case show that a simple charge-spin separation Ansatz is able to describe the overall features of the spectral function such as the bandwidth and the compact support of the spectral function, over the whole energy range for values of J / t from 1/3 to 4. This is contrasted with the two-dimensional case. The quasiparticle weight Zk is computed on lattices up to L =128 sites in one dimension, and scales as . Received 15 February 2000  相似文献   

12.
We consider one-dimensional (1D) interacting spinless fermions with a non-linear spectrum in a clean quantum wire (non-linear bosonization). We compute diagrammatically the 1D dynamical structure factor, S(ω,q), beyond the Tomonaga approximation focusing on it's tails, |ω| ≫vq, i.e. the 2-pair excitation continuum due to forward scattering. Our methodology reveals three classes of diagrams: two “chiral” classes which bring divergent contributions in the limits ω→±vq, i.e. near the single-pair excitation continuum, and a “mixed” class (so-called Aslamasov-Larkin or Altshuler-Shklovskii type diagrams) which is crucial for the f-sum rule to be satisfied. We relate our approach to the T=0 ones present in the literature. We also consider the case and show that the 2-pair excitation continuum dominates the single-pair one in the range: |q|T/kF ≪ω±vq ≪T (substantial for q ≪kF). As applications we first derive the small-momentum optical conductivity due to forward scattering: σ∼1/ω for T ≪ω and σ∼T/ω2 for T ≫ω. Next, within the 2-pair excitation continuum, we show that the attenuation rate of a coherent mode of dispersion Ωq crosses over from , e.g. γq ∼|q|3 for an acoustic mode, to , independent of Ωq, as temperature increases. Finally, we show that the 2-pair excitation continuum yields subleading curvature corrections to the electron-electron scattering rate: , where V is the dimensionless strength of the interaction.  相似文献   

13.
An investigation of the different contributions leading to charge localization in a 1/2 or 1/4 filled band 1D conductor has been conducted through a study of transport properties in the solid solution [(TMTSF)1-x (TMTTF) x]2ReO4. The existence of an ordering transition of the anions allows to identify two contributions to the electronic potential with wave vector 4kF. A dominant on-site 4kF potential besides the bond contribution is revealed when Umklapp scattering is pertinent via the weakening of the localization arising at the (0, 1/2, 1/2) anion ordering which is stabilized under pressure in the compound [(TMTSF) 0.5 (TMTTF)0.5]2ReO4 at variance with the enhancement of localization observed in the homomolecular (TMTTF)2ReO 4 material. Received: 13 May 1998 / Revised: 8 July 1998 / Accepted: 9 July 1998  相似文献   

14.
We reconsider energy calculations of the spin polarized ν = 1/2 Chern-Simons theory. We show that one has to be careful in the definition of the Chern-Simons path integral in order to avoid an IR divergent magnetic ground state energy in RPA as in [J. Dietel et al, Eur. Phys. J. B 5, 439 (1998)]. We correct the path integral and get a well behaved magnetic energy by considering the energy of the maximal divergent graphs as well as the Hartree-Fock graphs. Furthermore, we consider the ν = 1/2 and the ν = 5/2 system with spin degrees of freedom. In doing this we formulate a Chern-Simons theory of the ν = 5/2 system by transforming the interaction operator to the next lower Landau level. We calculate the Coulomb energy of the spin polarized as well as the spin unpolarized ν = 1/2 and the ν = 5/2 system as a function of the interaction strength in RPA. These energies are in good agreement with numerical simulations of interacting electrons in the first as well as in the second Landau level. Furthermore, we calculate the compressibility, the effective mass and the excitations of the spin polarized ν = 2 + 1/ systems where is an even number. Received 13 June 2000  相似文献   

15.
We review and extend the composite fermion theory for semiconductor quantum dots in high magnetic fields. The mean-field model of composite fermions is unsatisfactory for the qualitative physics at high angular momenta. Extensive numerical calculations demonstrate that the microscopic CF theory, which incorporates interactions between composite fermions, provides an excellent qualitative and quantitative account of the quantum dot ground state down to the largest angular momenta studied, and allows systematic improvements by inclusion of mixing between composite fermion Landau levels (called Λ levels).  相似文献   

16.
A real-space method has been introduced to study the pairing problem within the generalized Hubbard Hamiltonian. This method includes the bond-charge interaction term as an extension of the previously proposed mapping method [1] for the Hubbard model. The generalization of the method is based on mapping the correlated many-body problem onto an equivalent site- and bond-impurity tight-binding one in a higher dimensional space, where the problem can be solved exactly. In a one-dimensional lattice, we analyzed the three particle correlation by calculating the binding energy at the ground state, using different values of the bond-charge, the on-site (U) and the nearest-neighbor (V) interactions. A pairing asymmetry is found between electrons and holes for the generalized hopping amplitude, where the hole pairing is not always easier than the electron case. For some special values of the hopping parameters and for all kinds of interactions in the Hubbard Hamiltonian, an analytical solution is obtained. Received 21 January 2000 and Received in final form 18 July 2000  相似文献   

17.
A scattering approach for correlated one-dimensional systems is developed. The perfect contact to charge reservoirs is encoded in time-dependent boundary conditions. The conductance matrix for an arbitrary gated wire, respecting charge conservation, is expressed through a dynamic scattering matrix. Two applications are developed. First, it is shown that the dc conductance is equal to e 2/h for any model with conserved total left- and right-moving charges. Second, the ac conductance matrix is explicitly computated for the Tomonaga-Luttinger model (TLL). Received 31 August 1998  相似文献   

18.
We present a detailed derivation of the Gutzwiller approximation for multi-band Hubbard models with density-density Coulomb interactions. For the one-band Hubbard model we introduce a mathematically well-defined formalism which is easily generalized to the multi-band case. In contrast to earlier attempts, our approach allows us to include inter-orbital hopping terms in the Hamiltonian. Received: 9 December 1997 / Revised and accepted: 6 March 1998  相似文献   

19.
The exactly solvable model of supersymmetric t - J chains (STJC) of correlated electrons with next-nearest-neighbour (NNN) interactions is proposed and studied. The model with interactions between nearest neighbours and NNN interactions in one chain can also be considered as a two-chain model with zigzag-like coupling between the chains. The NNN interaction (coupling between chains) causes the onset of additional Dirac seas for low-lying charge and/or spin excitations. These Dirac seas change the low-energy (conformal) behavior of the model. The filling of those seas depends on the values of the NNN coupling (interactions between chains), external magnetic field and applied voltage. We identify the new ground state phases which appear due to the NNN as incommensurate ones. The NNN coupling in the incommensurate phases induces spontaneous magnetization and/or spontaneous filling of the Dirac sea for charge excitations (“spontaneous charge ordering”). The onset of this order implies a first order quantum phase transition driven by the field with hysteresis phenomena. Received 13 September 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号