首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The solubility, diffusivity, and permeability of ethylbenzene in poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) at 35, 45 and 55 °C were determined using kinetic gravimetric sorption and pure gas permeation methods. Ethylbenzene solubility in PTMSP was well described by the generalized dual‐mode model with χ = 0.39 ± 0.02, b = 15 ± 1, and CH = 45 ± 4 cm3 (STP)/cm3 PTMSP at 35 °C. Ethylbenzene solubility increased with decreasing temperature; the enthalpy of sorption at infinite dilution was −40 ± 7 kJ/mol and was essentially equal to the enthalpy change upon condensation of pure ethylbenzene. The diffusion coefficient of ethylbenzene in PTMSP decreased with increasing concentration and decreasing temperature. Activation energies of diffusion were very low at infinite dilution and increased with increasing concentration to a maximum value of 50 ± 10 kJ/mol at the highest concentration explored. PTMSP permeability to ethylbenzene decreased with increasing concentration. The permeability estimated from solubility and diffusivity data obtained by kinetic gravimetric sorption was in good agreement with permeability determined from direct permeation experiments. Permeability after exposure to a high ethylbenzene partial pressure was significantly higher than that observed before the sample was exposed to a higher partial pressure of ethylbenzene. Nitrogen permeability coefficients were also determined from pure gas experiments. Nitrogen and ethylbenzene permeability coefficients increased with decreasing temperature, and infinite dilution activation energies of permeation for N2 and ethylbenzene were −5.5 ± 0.5 kJ/mol and −74 ± 11 kJ/mol, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1078–1089, 2000  相似文献   

2.
This paper studies the diffusive and sorption steps of several gases across membranes cast from poly(N-phenyl-exo,endo-norbornene-5,6-dicarboximide) chloroform solutions. Chains packing effects on gas transport was investigated by conducting a parallel study on the permeation characteristics of membranes cast from hydrogenated poly(N-phenyl-exo,endo-norbornene-5,6-dicarboximide) chloroform solutions. The permeability coefficients of several gases in the two membranes were measured finding that hydrogenation of the norbornene moieties decreases gas permeability. The transition states approach was used to determine the trajectories of the gases in the two types of membranes from which the diffusion coefficients were obtained. Monte Carlo techniques based on the Widom method were used to simulate gas sorption process as a function of pressure. The values of the solubility coefficients thus obtained undergo a relatively sharp drop at low pressures approaching to a constant value as pressure increases. With the exception of carbon dioxide, pretty good agreement between the experimental and simulated values of the permeability coefficient is found for the gases studied.  相似文献   

3.
Poly(1-trimethylsilyl-1-propyne) (PTMSP), the most permeable polymer known, undergoes rapid physical aging. The permeability of PTMSP to gases and vapors decreases dramatically with physical aging. Cavity size (free volume) distributions were calculated in as-cast and aged PTMSP, using an energetic based cavity-sizing algorithm. The large cavities found in as-cast PTMSP disappear in aged PTMSP, which is consistent with the positron annihilation lifetime spectroscopy (PALS) measurements. We also characterized the connectivity of cavities in both as-cast and aged PTMSP membranes. Cavities are more connected in as-cast PTMSP than in aged PTMSP. The average cavity sizes calculated from computer simulation are in good agreement with PALS measurements. The transport and sorption properties of gases in as-cast and aged PTMSP are also measured by molecular simulation. Computer simulations showed the decrease of permeability and the increase of permeability selectivity in PTMSP membranes with physical aging, which agrees with experimental observations. The reduction in gas permeability with physical aging results mainly from the decrease of diffusion coefficients. Solubility coefficients show no significant changes with physical aging.  相似文献   

4.
Highly permeable glassy polymeric membranes based on poly (1‐trimethylsilyl‐1‐propyne) (PTMSP) and a polymer of intrinsic porosity (PIM‐1) were investigated for water sorption, water permeability and the separation of CO2 from N2 under humid mixed gas conditions. The water sorption isotherms for both materials followed behavior indicative of multilayer adsorption within the microvoids, with PIM‐1 registering a significant water uptake at very high water activities. Analysis of the sorption isotherms using a modified dual sorption model which accounts for such multilayer effects gave Langmuir affinity constants more consistent with lighter gases than the use of the standard dual mode approach. The water permeability through PTMSP and PIM‐1 was comparable over the water activities studied, and could be successfully model ed through a dual mode sorption model with a concentration dependent diffusivity. The water permeability through both membranes as a function of temperature was also measured, and found to be at a minimum at 80 ° C for PTMSP and 70 °C for PIM‐1. This temperature dependence is a function of reducing water solubility in both membranes with increasing temperature countered by increasing water diffusivity. The CO2 ‐ N2 mixed gas permeabilities through PTMSP and PIM‐1 were also measured and model ed through dual mode sorption theory. Introducing water vapour further reduced both the CO2 and N2 permeabilities. The plasticization potential of water in PTMSP was determined and indicated water swelled the membrane increasing CO2 and N2 diffusivity, while for PIM‐1 a negative potential implied that water filling of the microvoids hampered CO2 and N2 diffusion through the membrane. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 719–728  相似文献   

5.
Sorption isotherms, sorption enthalpies, and diffusion coefficients for water in an 11 μm thick PEO/PAA multi-layer film have been measured at 30, 40, and 60 °C for relative humidities between 0 and 70%. All quantities were measured on the same film using the quartz crystal microbalance/heat conduction calorimeter. Water diffusion coefficients in the film are several orders of magnitude lower than in the separate components. Sorption isotherms are of type III at 30 and 40 °C and linear at 60 °C. Water vapor permeabilities are calculated as the product of Henry's law solubility and diffusion coefficient. The permeability of the PEO/PAA multilayer film is exceedingly low compared to other polymer films used as membranes. The enthalpy of water sorption determined from the sorption isotherms using the van’t Hoff relation is 32.9 ± 0.3 kJ/mol. Calorimetric enthalpies of water sorption range from 42 to 34 kJ/mol at 30 and 40 °C over the humidity range studied. The change in motional resistance, a quantity proportion to the loss compliance of the film, has also been recorded at all three temperatures, and a common trend is an increase in loss compliance with increasing relative humidity, indicating plasticization of the film by water.  相似文献   

6.
Poly(1-trimethylsilyl-1-propyne) (PTMSP) membranes were fabricated by solvent casting from solutions of toluene, cyclohexane and tetrahydrofuran. The effects of the casting solvent on the physical structure of PTMSP were investigated using wide angle X-ray diffraction and positron annihilation lifetime spectroscopy. The permeability of oxygen, nitrogen and carbon dioxide through the cast membranes was also measured. It was found that the nature of the casting solvent markedly influenced the conformation and the free volume of PTMSP, which in turn affected the gas permeability of the cast membranes.  相似文献   

7.
采用溶液浇铸法,制备了厚度为50~202 μm的聚(1-三甲基硅基-1-丙炔)(PTMSP)膜,研究了膜厚度、储存温度以及储存气氛对其气体渗透性能的影响。 在室温下储存时,PTMSP膜发生物理老化,气体渗透系数先是迅速下降,然后缓慢降低并趋向平稳。 在空气气氛中的下降速率要略大于在N2气气氛中。 气体渗透系数的下降速率随膜厚度的减小而增大。 在高温(100 ℃)空气气氛中,受物理及化学老化的共同作用,PTMSP膜气体渗透系数的下降速率进一步增大,IR谱图表明,聚合物氧化生成了C=O等极性基团。 随储存时间的延长,溶解度系数基本不变,扩散系数的下降是导致气体渗透系数下降的主要原因,这与聚合物体积松弛和(或)致密化及极性基团的形成所造成的自由体积的减小紧密相关。  相似文献   

8.
The permeability coefficients of saturated and non-saturated vapors of benzene, hexane and cyclohexane through flat polymer membranes (low density polyethylene BRALEN FB2-30 and polyether-block-amide PEBA 4033-PE) by two different experimental techniques at 298.15 K are reported. The permeation data have been obtained using the differential flow permeameter and sorption ones by glass sorption apparatus with McBain’s spiral balance. The so-called stationary (steady) diffusion theory has been applied for evaluating the permeability coefficients from sorption (equilibrium) data and obtained values have been compared with the permeability coefficients from permeation (steady-state) measurements. In the case of relative lower vapors sorption in polymers (hexane and cyclohexane) good agreement between permeability coefficients from sorption and permeation is obtained. Hence, this paper proves the possibility to estimate the permeability coefficients of organic vapors from sorption data without need of performing the permeation experiments.  相似文献   

9.
The diffusion and sorption of methyl substituted benzenes through cross-linked nitrile rubber/poly(ethylene co-vinyl acetate) (NBR/EVA) blend membranes has been studied. The influence of blend composition, cross-linking systems, temperature and size of penetrants on the transport behaviour has been analysed. It was observed that as the EVA content increases in the blends, the solvent uptake decreases. An increase in the penetrant size also decreases the solvent uptake. The diffusion experiments were carried out in the temperature range 23–75 °C. As temperature increases the equilibrium uptake also increases. The transport coefficients namely diffusion coefficient, sorption coefficient and permeation coefficient have been calculated. The sorption data has been used to estimate the activation energies for permeation and diffusion. The van’t Hoff relationship was used to determine the thermodynamic parameters. The affine and phantom models for chemical cross-links were used to predict the nature of cross-links. Models for permeability were used and the theoretical values compared with the experimental results.  相似文献   

10.
PTMSP membranes were prepared and characterized. The mean molecular weight of the polymer was found to be 450,000 Da. Time dependence of the density, mechanical properties, IR spectra, DSC, PAL, and permeability data of the polymer and membranes are presented. A detailed analysis of PAL results for PTMSP samples under vacuum, in air, oxygen, and nitrogen atmosphere is presented with the aim to investigate the influence of the external atmosphere on the experimental PAL measurements and to determine correctly the size and the number of the free volume holes. From all the experimental data a model of a channel network is proposed for PTMSP with large holes (mean radium r = 0.75 nm) connected by channel-like holes (mean radium 0.45 nm). The number of large holes decreases by ageing, but not their size, whereas the number of small holes does not change but their size decreases. According to our model the decrease in the permeability of PTMSP with time could be caused by the decrease of the size of the channel-like holes. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Water sorption and transport properties for a series of miscible blends of hydrophobic bisphenol A polysulfone and hydrophilic poly(vinyl pyrrolidone) are reported. Study was restricted to blends that remained homogeneous after exposure to liquid water. The solubility of water in the blend films increased with increasing hydrophilic polymer content. Equilibrium sorption isotherms show dual-mode behavior at low activities and swelling behavior at high activities. The sorption kinetics are generally Fickian for blends containing 20% poly(vinyl pyrrolidone) or less, but exhibit two-stage behavior in blends containing 40% poly(vinyl pyrrolidone). Diffusion coefficients extrapolated to zero concentration decrease with increasing poly(vinyl pyrrolidone) content, owing to a decrease in the fractional free volume. However, the diffusion coefficient becomes a greater function of activity as the composition of hydrophilic polymer in the blend is increased, due to plasticization of the material by large levels of sorbed water. Permeability coefficients generally decrease with increasing poly(vinyl pyrrolidone) content for blends containing 20% poly(vinyl pyrrolidone) or less because the decrease in the diffusion coefficient is greater than the increase in the solubility coefficient. Blends containing 40% poly(vinyl pyrrolidone) have permeability coefficients greater than those of polysulfone due to high water solubility. The permeability coefficients depend on water concentration in approximately the same way for all blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 655–674, 1997  相似文献   

12.
Plasticized films cast from ethyl cellulose were examined to evaluate the effect of the degree of substitution, DS, and the plasticizer content on the sorption and diffusion of oxygen. Sorption and permeation measurements were performed over a temperature range of 25–65°C on three different types of ethyl cellulose in the DS range 1.7–2.5 that had been plasticized with organic esters of comparatively low molecular weight. Sorption coefficients were determined by the pressure decay method, and permeability coefficients were measured independently according to ASTM D-1434-66. The diffusion coefficients were calculated assuming Fickian transport, and were compared to the values directly obtained from the evaluation of the sorption kinetics. The permeability coefficient indicates that there is a significant improvement of the barrier properties of the materials when the DS is reduced and when the plasticizer content is at the absolute minimum required. It was found that the variation in the magnitude of the permeability coefficient is related to the value of the diffusion coefficient, which is governed by the chemical composition of the mixtures. In contrast, the solubility of oxygen was determined by the physical state of the polymer matrix and increased rapidly at temperatures significantly below the glass transition temperature. Using an ergodic model, the diffusion coefficients obtained were related to the size distribution of microvoids in the materials and relative values for the diffusion coefficient were computed as a function of DS and temperature. The model calculates the concentration (number per volume) of voids that are large enough to be occupied by a penetrant molecule. It was assumed that the unoccupied volume fraction as a function of the cohesive energy density follows a Boltzmann distribution. The cohesive energy density and the unoccupied volume fraction of the polymer-plasticizer mixtures were calculated by fitting the Simha-Somcynsky equation of state to pressure-volume-temperature data. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 639–653, 1997  相似文献   

13.
The permeability of polymer membranes to steroids was studied as a function of both permeant and membrane properties, using nine steroids and copolymer membranes prepared from poly(etherurethanes) and poly(ethylene vinyl acetates). Permeabilities, diffusion coefficients, and solubilities of the steroids in the membranes were determined in sorption—desorption and permeation experiments. Steroids with higher melting points permeated more slowly. This relationship originated from the lower diffusivities and solubilities of higher-melting steroids in the polymer phase; the effect of solubility changes was predominant. Reducing the polyether content of poly(etherurethane)merebranes ten-fold decreased their permeability to androstenedione by four orders of magnitude (from 10?10 to 10?14 g steroid/cm-sec at 37°C), due largely to diffusivity decreases. In contrast, reducing the vinyl acetate content of poly(ethylene vinyl acetate) membranes from 40% to 9% produced only modest changes in bath steroid solubility and diffusion coefficient. The permeability to androstenedione within this series of copolymer membranes ranged between 10?11 and 10?12 g steroid/cm-sec at 37°C.  相似文献   

14.
合成了含有取代联苯及烷基硅取代基的二芳基乙炔单体(1a~1d),以TaCl5-n-Bu4Sn作催化剂聚合得到聚合物2a、2b和2d。 所得聚合物在常规有机溶剂中具有良好的溶解性。 用聚合物2a和2b的甲苯溶液浇铸制备了均质膜。 采用三氟乙酸对聚合物2a和2b膜进行去硅化反应,制备了不溶性膜3a和3b。 热重分析表明,所得聚合物均具有高的热稳定性,在空气中的热失重起始温度分别为340和430 ℃。 聚合物2a和2b的氧气渗透系数(PO2)分别为260和390 barrers,去硅化膜3a和3b的PO2分别下降至73和180 barrers。 聚合物膜的O2/N2分离系数为2.4~3.3,并随PO2的增加而减小。 由气体在聚合物膜中的扩散系数和溶解系数的测定,扩散系数的降低是导致去硅化膜气体渗透系数下降的主要原因。  相似文献   

15.
Methanol diffusion in two polymer electrolyte membranes, Nafion 117 and BPSH 40 (a 40% disulfonated wholly aromatic polyarylene ether sulfone), was measured using a modified pulsed field gradient NMR method. This method allowed for the diffusion coefficient of methanol within the membrane to be determined while immersed in a methanol solution of known concentration. A second set of gradient pulses suppressed the signal from the solvent in solution, thus allowing the methanol within the membrane to be monitored unambiguously. Over a methanol concentration range of 0.5–8 M, methanol diffusion coefficients in Nafion 117 were found to increase from 2.9 × 10−6 to 4.0 × 10−6 cm2 s−1. For BPSH 40, the diffusion coefficient dropped significantly over the same concentration range, from 7.7 × 10−6 to 2.5 × 10−6cm2 s−1. The difference in diffusion behavior is largely related to the amount of solvent sorbed by the membranes. Increasing the methanol concentration results in an increase in solvent uptake for Nafion 117, while BPSH 40 actually excludes the solvent at higher concentrations. In contrast, diffusion of methanol measured via permeability measurements (assuming a partition coefficient of 1) was lower (1.3 × 10−6 and 6.4 × 10−7 cm2 s−1 for Nafion 117 and BPSH 40 respectively) and showed no concentration dependence. The differences observed between the two techniques are related to the length scale over which diffusion is monitored and the partition coefficient, or solubility, of methanol in the membranes as a function of concentration. For the permeability measurements, this length is equal to the thickness of the membrane (178 and 132 μm for Nafion 117 and BPSH 40 respectively) whereas the NMR method observes diffusion over a length of approximately 4–8 μm. Regardless of the measurement technique, BPSH 40 is a greater barrier to methanol permeability at high methanol concentrations.  相似文献   

16.
Pure gas solubility and permeability of H2, O2, N2, CO2, CH4, C2H6, C3H8, CF4, C2F6, and C3F8 in poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) were determined as a function of pressure at 35°C. Permeability coefficients of the perfluorinated penetrants are approximately an order of magnitude lower than those of their hydrocarbon analogs, and lower even than those of the permanent gases. In striking contrast to hydrocarbon penetrants, PTMSP permeability to fluorocarbon penetrants decreases with increasing penetrant size. This unusual size‐sieving behavior in PTMSP is attributed to low perfluorocarbon solubilities in PTMSP coupled with low diffusion coefficients relative to those of their hydrocarbon analogs. In general, perfluorocarbon penetrants are less soluble than their hydrocarbon analogs in PTMSP. The difference in hydrocarbon and perfluorocarbon solubilities in high free volume, hydrocarbon‐rich PTMSP is much smaller than in hydrocarbon liquids and liquidlike polydimethylsiloxane. The low solubility of perfluorocarbon penetrants is ascribed to the large size of the fluorocarbons, which inhibits their dissolution into the densified regions of the polymer matrix and reduces the number of penetrant molecules that can be accommodated in Langmuir sites. From the permeability and sorption data, diffusion coefficients were calculated as a function of penetrant concentration. With the exception of H2 and the C3 analogs, all of the penetrants exhibit a maximum in their concentration‐dependent diffusion coefficients. Resolution of diffusion coefficients into a mobility factor and a thermodynamic factor reveals that it is the interplay between these two terms that causes the maxima. The mobility of the smaller penetrants (H2, O2, N2, CH4, and CO2) decreases monotonically with increasing penetrant concentration, suggesting that the net free volume of the polymer–penetrant mixture decreases as additional penetrant is added to PTMSP. For larger penetrants mobility either: (1) remains constant at low concentrations and then decreases at higher penetrant concentrations (C2H6, CF4, and C2F6); (2) remains constant for all concentrations examined (C3H8); or (3) increases monotonically with increasing penetrant concentration (C3F8). Presumably these results reflect the varying effects of these penetrants on the net free volume of the polymer–penetrant system. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 273–296, 2000  相似文献   

17.
The gas permeation properties of poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and blends of PTMSP and PPP have been determined with hydrocarbon/hydrogen mixtures. For a glassy polymer, PTMSP has unusual gas permeation properties which result from its very high free volume. Transport in PPP is similar to that observed in conventional, low-free-volume glassy polymers. In experiments with n-butane/hydrogen gas mixtures, PTMSP and PTMSP/PPP blend membranes were more permeable to n-butane than to hydrogen. PPP, on the other hand, was more permeable to hydrogen than to n-butane. As the PTMSP composition in the blend increased from 0 to 100%, n-butane permeability increased by a factor of 2600, and n-butane/hydrogen selectivity increased from 0.4 to 24. Thus, both hydrocarbon permeability and hydrocarbon/hydrogen selectivity increase with the PTMSP content in the blend. The selectivities measured with gas mixtures were markedly higher than selectivities calculated from the corresponding ratio of pure gas permeabilities. The difference between mixed gas and pure gas selectivity becomes more pronounced as the PTMSP content in the blend increases. The mixed gas selectivities are higher than pure gas selectivities because the hydrogen permeability in the mixture is much lower than the pure hydrogen permeability. For example, the hydrogen permeability in PTMSP decreased by a factor of 20 as the relative propane pressure (p/psat) in propane/hydrogen mixtures increased from 0 to 0.8. This marked reduction in permanent gas permeability in the presence of a more condensable hydrocarbon component is reminiscent of blocking of permanent gas transport in microporous materials by preferential sorption of the condensable component in the pores. The permeability of PTMSP to a five-component hydrocarbon/hydrogen mixture, similar to that found in refinery waste gas, was determined and compared with published permeation results for a 6-Å microporous carbon membrane. PTMSP exhibited lower selectivities than those of the carbon membrane, but permeability coefficients in PTMSP were nearly three orders of magnitude higher. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Desulphurization mechanism of polyethylene glycol (PEG) membranes has been investigated by the study of solubility and diffusion behavior of typical gasoline components through PEG membranes with various crosslinking degrees. The sorption, diffusion and permeation coefficients were calculated by the systematic studies of dynamic sorption curves of gasoline components such as thiophene, n-heptane, cyclohexane, cyclohexene and toluene in PEG membranes. Furthermore, the temperature dependence of diffusion and solubility coefficients and the influence of crosslinking degree on sorption and diffusion behaviors were conducted to elucidate the mass-transfer mechanism. According to the discussions on dynamic sorption curves, transport mode, activation energy and thermodynamic parameters, thiophene species were the preferential permeation components. Crosslinking is an effective modification way to improve the overall performance of PEG membranes applied in gasoline desulphurization. The pervaporation (PV) and gas chromatography (GC) experiments results corresponded to the conclusions. All these investigations will provide helpful suggestions for the newly emerged membrane desulphurization technology and complex organic mixture separation by pervaporation.  相似文献   

19.
Polymer/liquid crystal composite membranes were cast from a 1,2-dichloroethane solution of polycarbonate (PC) and N-(4-ethoxybenzylidene-4'-n- butylaniline) (EBBA). The mixing state of the polymer/liquid crystal composite membrane was investigated on the basis of differential scanning calorimetry, x-ray, density, sorption isotherm and sorption—desorption studies and also by electron microscopic observations. EBBA molecules in the composite membrane exist in an almost molecularly dispersed state up to an EBBA fraction of 30 wt%, and in the case of EBBA fractions above 30 wt% form a crystal domain as the mutual continuous phase among the network of polycarbonate fibrils. The composite membrane containing EBBA of 60 wt% can be handled as a homogeneous medium when considering gas permeation.The diffusive permeability coefficient to water reveals a distinct jump in the vicinity of the crystal—liquid crystal phase transition temperature of EBBA. The permeability coefficients, P, to hydrocarbon gases increases 100-200 times over several degrees in the phase transition temperature range. P for hydrocarbon gases decreases with increasing number of carbon atoms below the phase transition temperature, but increases with increasing number of carbon atoms above it. These results suggest that the permeation process is predominantly controlled by diffusion mechanism below the transition temperature of EBBA, while the solubility factor significantly affects gas permeation above it.  相似文献   

20.
Aromatic polyamides, designed for evaluation as gas separation membranes, were processed into dense films, whose properties were measured with special emphasis on their mechanical and thermal properties. The polymers had been synthesized from monomers bearing side substituents, such as methyl, iso-propyl or tert-butyl, and various hinge-like connecting linkages of p-phenylene moieties, which yielded amorphous aromatic polyamides, with improved solubility, high glass transition temperatures (over 250 °C) and excellent mechanical properties (tensile strength about 100 MPa, and moduli about 2.0 GPa). The permeability of the polymer films were investigated using helium, oxygen, nitrogen, carbon dioxide and methane. Gas permeability typically increased with increasing free volume, and, in general, free volume could be related to the chemical structure. The analysis of the transport parameters (permeability, diffusivity and solubility coefficients) as a function of the chemical structure, confirmed the predominant role of the side substituents and of the linking groups connecting phenylene units on the permeation properties. Besides, a molecular modelling study carried out via computational chemistry, made it clear that an acceptable theoretical explanation can be given of how the nature of hinge groups between aromatic rings can affect torsional mobility and gas diffusion of aromatic polyamides.

The experimental aromatic polyamides of this report, as a whole, showed a favourable combination of permeability–selectivity, better than that of conventional polyamides and that of most engineering thermoplastics, confirming the hypothesis that the incorporation of side bulky substituents is a convenient approach to hinder the inherently efficient chain packing of polyamides.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号